Skip to main content
Log in

Insights into the structural determinants for selective inhibition of nitric oxide synthase isoforms

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Selective inhibition of the nitric oxide synthase isoforms (NOS) is a promising approach for the treatment of various disorders. However, given the high active site conservation among all NOS isoforms, the design of selective inhibitors is a challenging task. Analysis of the X-ray crystal structures of the NOS isoforms complexed with known inhibitors most often gives no clues about the structural determinants behind the selective inhibition since the inhibitors share the same binding conformation. Aimed at a better understanding of the structural factors responsible for selective inhibition of NOS isoforms we have performed MD simulations for iNOS, nNOS and eNOS complexed with Nω-NO2-L-Arg (1), and with the aminopyridine derivatives 2 and 3. The slightly better selectivity of 1 for nNOS may be assigned to the presence of extra charge–charge interactions due to its “extended” conformation. While the high affinity of 2 for iNOS can be explained by the formation of an iNOS-specific subpocket upon binding, the lack of affinity for eNOS is associated to a conformational change in Glu363. The strong van der Waals and electrostatic interactions between 3 and the active site of nNOS are most likely responsible for its higher affinity for this isoform. Owing to the elongated and narrow binding pocket of iNOS, the correct positioning of 3 over the heme group is difficult, which may account for its lower affinity toward this isoform. Brought together, our results might help to rationalize the design of selective NOS inhibitors.

Overall RMSD of the protein backbone over 8 ns simulation is shown for the complexes 3:eNOSmonomer and 3:eNOSdimer

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615

    Article  CAS  Google Scholar 

  2. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43(2):109–142

    CAS  Google Scholar 

  3. Li H, Poulos TL (2005) Structure-function studies on nitric oxide synthases. J Inorg Biochem 99(1):293–305

    Article  CAS  Google Scholar 

  4. Leiper J, Nandi M (2011) The therapeutic potential of targeting endogenous inhibitors of nitric oxide synthesis. Nat Rev Drug Discov 10(4):277–291

    Article  CAS  Google Scholar 

  5. Ji H, Erdal EP, Litzinger EA, Seo J, Zhu Y, Xue F, Fang J, Huang J, Silverman RB (2009) Selective neuronal nitric oxide synthase inhibitors. Front Med Chem 4:842–882

    Google Scholar 

  6. Wink DA, Mitchell JB (2003) Nitric oxide and cancer: an introduction. Free Radic Biol Med 34(8):951–954

    Article  CAS  Google Scholar 

  7. Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, Fishman MC (1995) Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377(6546):239–242

    Article  CAS  Google Scholar 

  8. Vallance P, Leiper J (2002) Blocking NO synthesis: how, where and why? Nat Rev Drug Discov 1(12):939–950

    Article  CAS  Google Scholar 

  9. Di Giacomo C, Sorrenti V, Salerno L, Cardile V, Guerrera F, Siracusa MA, Avitabile M, Vanella A (2003) Novel inhibitors of neuronal nitric oxide synthase. Exp Biol Med 228(5):486–490

    Google Scholar 

  10. Zicha J, Pechánová O, Dobesová Z, Kunes J (2003) Hypertensive response to chronic NG-nitro-L-arginine methyl ester (L-NAME) treatment is similar in immature and adult Wistar rats. Clin Sci 105(4):483–489

    Article  CAS  Google Scholar 

  11. Macdonald JE (1996) Chapter 23. Nitric oxide synthase inhibitors. Ann Rep Med Chem 31:221–230

    Google Scholar 

  12. Granik VG, Grigorev NB (2002) Nitric oxide synthase inhibitors: biology and chemistry. Russ Chem Bull 51(11):1973–1995

    Article  CAS  Google Scholar 

  13. Tafi A, Angeli L, Venturini G, Travagli M, Corelli F, Botta M (2006) Computational studies of competitive inhibitors of nitric oxide synthase (NOS) enzymes: towards the development of powerful and isoform-selective inhibitors. Curr Med Chem 13(16):1929–1946

    Article  CAS  Google Scholar 

  14. Oliveira BL, Correia JDG, Raposinho PD, Santos I, Ferreira A, Cordeiro C, Freire AP (2009) Re and 99mTc organometallic complexes containing pendant l-arginine derivatives as potential probes of inducible nitric oxide synthase. Dalton Trans 1:152–162

    Article  Google Scholar 

  15. Oliveira BL, Raposinho PD, Mendes F, Figueira FV, Santos I, Ferreira AN, Cordeiro C, Freire AP, Correia JDG (2010) Re and Tc tricarbonyl complexes: from the suppression of NO biosynthesis in macrophages to in vivo targeting of inducible nitric oxide synthase. Bioconjug Chem 21(12):2168–2172

    Article  CAS  Google Scholar 

  16. Oliveira BL, Raposinho PD, Mendes F, Santos IC, Santos I, Ferreira A, Cordeiro C, Freire AP, Correia JDG (2011) Targeting nitric oxide synthase with 99mTc/Re-tricarbonyl complexes containing pendant guanidino or isothiourea moieties. J Organomet Chem 696(5):1057–1065

    Article  CAS  Google Scholar 

  17. Fischmann TO, Hruza A, Niu XD, Fossetta JD, Lunn CA, Dolphin E, Prongay AJ, Reichert P, Lundell DJ, Narula SK, Weber PC (1999) Structural characterization of nitric oxide synthase isoforms reveals striking active-site conservation. Nat Struct Mol Biol 6(3):233–242

    Article  CAS  Google Scholar 

  18. Garvey EP, Oplinger JA, Furfine ES, Kiff RJ, Laszlo F, Whittle BJR, Knowles RG (1997) 1400W Is a slow, tight binding, and highly selective inhibitor of inducible nitric-oxide synthase in vitro and in vivo. J Biol Chem 272(8):4959–4963

    Article  CAS  Google Scholar 

  19. Fedorov R, Hartmann E, Ghosh DK, Schlichting I (2003) Structural basis for the specificity of the nitric-oxide synthase inhibitors W1400 and Nω-Propyl-l-Arg for the inducible and neuronal isoforms. J Biol Chem 278(46):45818–45825

    Article  CAS  Google Scholar 

  20. Li H, Raman CS, Martásek P, Masters BSS, Poulos TL (2001) Crystallographic studies on endothelial nitric oxide synthase complexed with nitric oxide and mechanism-based inhibitors†. Biochemistry 40(18):5399–5406

    Article  CAS  Google Scholar 

  21. Ji H, Stanton BZ, Igarashi J, Li H, Martásek P, Roman LJ, Poulos TL, Silverman RB (2008) Minimal pharmacophoric elements and fragment hopping, an approach directed at molecular diversity and isozyme selectivity. Design of selective neuronal nitric oxide synthase inhibitors. J Am Chem Soc 130(12):3900–3914

    Article  CAS  Google Scholar 

  22. Garcin ED, Arvai AS, Rosenfeld RJ, Kroeger MD, Crane BR, Andersson G, Andrews G, Hamley PJ, Mallinder PR, Nicholls DJ, St-Gallay SA, Tinker AC, Gensmantel NP, Mete A, Cheshire DR, Connolly S, Stuehr DJ, Aberg A, Wallace AV, Tainer JA, Getzoff ED (2008) Anchored plasticity opens doors for selective inhibitor design in nitric oxide synthase. Nat Chem Biol 4(11):700–707

    Article  CAS  Google Scholar 

  23. Matter H, Kumar HSA, Fedorov R, Frey A, Kotsonis P, Hartmann E, Fröhlich LG, Reif A, Pfleiderer W, Scheurer P, Ghosh DK, Schlichting I, Schmidt HHHW (2005) Structural analysis of isoform-specific inhibitors targeting the tetrahydrobiopterin binding site of human nitric oxide synthases. J Med Chem 48(15):4783–4792

    Article  CAS  Google Scholar 

  24. Li H, Raman CS, Martásek P, Král V, Masters BSS, Poulos TL (2000) Mapping the active site polarity in structures of endothelial nitric oxide synthase heme domain complexed with isothioureas. J Inorg Biochem 81(3):133–139

    Article  CAS  Google Scholar 

  25. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19(14):1639–1662

    Article  CAS  Google Scholar 

  26. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    Article  CAS  Google Scholar 

  27. Shelley J, Cholleti A, Frye L, Greenwood J, Timlin M, Uchimaya M (2007) Epik: a software program for pKa prediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des 21(12):681–691

    Article  CAS  Google Scholar 

  28. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97(40):10269–10280

    Article  CAS  Google Scholar 

  29. Cornell WD, Cieplak P, Bayly CI, Kollmann PA (1993) Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation. J Am Chem Soc 115(21):9620–9631

    Article  CAS  Google Scholar 

  30. Dupradeau F-Y, Pigache A, Zaffran T, Savineau C, Lelong R, Grivel N, Lelong D, Rosanski W, Cieplak P (2010) The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building. Phys Chem Chem Phys 12(28):7821–7839

    Article  CAS  Google Scholar 

  31. Vanquelef E, Simon S, Marquant G, Garcia E, Klimerak G, Delepine JC, Cieplak P, Dupradeau F-Y (2011) R.E.D. Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Res 39(suppl 2):W511–W517

    Article  CAS  Google Scholar 

  32. Dupradeau F-Y, Cézard C, Lelong R, Stanislawiak É, Pêcher J, Delepine JC, Cieplak P (2008) R.E.DD.B.: a database for RESP and ESP atomic charges, and force field libraries. Nucleic Acids Res 36(suppl 1):D360–D367

    CAS  Google Scholar 

  33. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31(4):671–690

    CAS  Google Scholar 

  34. Li H, Raman CS, Glaser CB, Blasko E, Young TA, Parkinson JF, Whitlow M, Poulos TL (1999) Crystal structures of zinc-free and -bound heme domain of human inducible nitric-oxide synthase. J Biol Chem 274(30):21276–21284

    Article  CAS  Google Scholar 

  35. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802

    Article  CAS  Google Scholar 

  36. MacKerell AD, Bashford D, Bellott, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616

    Article  CAS  Google Scholar 

  37. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  Google Scholar 

  38. Cho K-B, Derat E, Shaik S (2007) Compound I of nitric oxide synthase: the active site protonation state. J Am Chem Soc 129(11):3182–3188

    Article  CAS  Google Scholar 

  39. Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) PDB2PQR: an automated pipeline for the setup of Poisson–Boltzmann electrostatics calculations. Nucleic Acids Res 32(suppl 2):W665–W667

    Article  CAS  Google Scholar 

  40. Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, Klebe G, Baker NA (2007) PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res 35(suppl 2):W522–W525

    Article  Google Scholar 

  41. Li H, Robertson AD, Jensen JH (2005) Very fast empirical prediction and rationalization of protein pKa values. Proteins Struct Funct Bioinforma 61(4):704–721

    Article  CAS  Google Scholar 

  42. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593

    Article  CAS  Google Scholar 

  43. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31(3):1695

    Article  Google Scholar 

  44. Feller SE, Zhang Y, Pastor RW, Brooks BR (1995) Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys 103(11):4613–4621

    Article  CAS  Google Scholar 

  45. Nosé S (2002) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys Int J Interface Chem Phys 100(1):191–198

    Google Scholar 

  46. Grest GS, Kremer K (1986) Molecular dynamics simulation for polymers in the presence of a heat bath. Phys Rev A 33(5):3628

    Article  CAS  Google Scholar 

  47. DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, San Carlos

    Google Scholar 

  48. Volarea. João Ribeiro, Group of Computational BioChemistry, Faculty of Sciences of the University of Porto, Porto, Portugal, http://www.compbiochem.org/Software/Volarea/Home.html

  49. Coleman RG, Sharp KA (2006) Travel depth, a new shape descriptor for macromolecules: application to ligand binding. J Mol Biol 362(3):441–458

    Article  CAS  Google Scholar 

  50. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269–271

    Article  Google Scholar 

  51. Delker SL, Ji H, Li H, Jamal J, Fang J, Xue F, Silverman RB, Poulos TL (2010) Unexpected binding modes of nitric oxide synthase inhibitors effective in the prevention of a cerebral palsy phenotype in an animal model. J Am Chem Soc 132(15):5437–5442

    Article  CAS  Google Scholar 

  52. Aparna V, Desiraju GR, Gopalakrishnan B (2007) Insights into ligand selectivity in nitric oxide synthase isoforms: a molecular dynamics study. J Mol Graph Model 26(2):457–470

    Article  CAS  Google Scholar 

  53. Rosenfeld RJ, Garcin ED, Panda K, Andersson G, Åberg A, Wallace AV, Morris GM, Olson AJ, Stuehr DJ, Tainer JA, Getzoff ED (2002) Conformational changes in nitric oxide synthases induced by chlorzoxazone and nitroindazoles: crystallographic and computational analyses of inhibitor potency. Biochemistry 41(47):13915–13925

    Article  CAS  Google Scholar 

  54. Xue F, Li H, Delker SL, Fang J, Martasek P, Roman LJ, Poulos TL, Silverman RB (2010) Potent, highly selective, and orally bioavailable Gem-difluorinated monocationic inhibitors of neuronal nitric oxide synthase. J Am Chem Soc 132(40):14229–14238

    Article  CAS  Google Scholar 

  55. Ji H, Delker SL, Li H, Martasek P, Roman LJ, Poulos TL, Silverman RB (2010) Exploration of the active site of neuronal nitric oxide synthase by the design and synthesis of pyrrolidinomethyl 2-aminopyridine derivatives. J Med Chem 53(21):7804–7824

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the Fundação para a Ciência e Tecnologia (FCT), Portugal (PTDC/QUI-QUI/121752/2010). We would like to thank F.-Y. Dupradeau for advice on using the R.E.D. server and for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria J. Ramos or João D. G. Correia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

The following supplementary material is available: Fig. S1: Sequence alignment of NOS oxygenase domains. Fig. S2 Chemical structures of 13 and torsions free to rotate during the docking process. Fig. S3 Description of the R.E.D. server procedure used to derive RESP charges for 1. Fig. S4 Close-up view of the lowest energy binding conformation of 3 inside eNOS. Fig. S5 Snapshot after 0 ns, 1.5 ns, 5 ns and 8 ns of MD simulation of the unbound iNOS isoform. Fig. S6 Average structures of 3:eNOSdimer and 3:eNOSmonomer calculated using the last 4 ns of simulation (A) and superimposition of these structures (B). Fig. S7 Overall RMSD of the protein backbone over 8 ns simulation is shown for the complexes 1:iNOS, 1:nNOS and 1:eNOS (A) and for inhibitor 1 (B). Fig. S8 Structural micro-environment around the active site of the unbound isoforms. Fig. S9 Superimposition of the X-ray structures of the 1:nNOS (violet, PDB ID 1K2R) and 1:eNOS (cyan, PDB ID 8NSE) complexes. Table S1 Summary of distances involved in the main interactions between inhibitor 1 and the neighboring amino acids residues on NOS isoforms. Fig. S10: Ability of Gln to switch between “open” and “closed” conformations creating an iNOS-specific subpocket. Fig. S11 Overlay of the average structure of 3 from the simulation of 3:nNOS and 3:eNOS and the conformations observed in the corresponding X-ray structures. (DOC 3868 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, B.L., Moreira, I.S., Fernandes, P.A. et al. Insights into the structural determinants for selective inhibition of nitric oxide synthase isoforms. J Mol Model 19, 1537–1551 (2013). https://doi.org/10.1007/s00894-012-1677-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1677-8

Keywords

Navigation