Journal of Molecular Modeling

, Volume 19, Issue 5, pp 2097–2106 | Cite as

Is the decrease of the total electron energy density a covalence indicator in hydrogen and halogen bonds?

  • Emilio L. Angelina
  • Darío J. R. Duarte
  • Nélida M. PeruchenaEmail author
Original Paper


In this work, halogen bonding (XB) and hydrogen bonding (HB) complexes were studied with the aim of analyzing the variation of the total electronic energy density H(r b ) with the interaction strengthening. The calculations were performed at the MP2/6−311++G(2d,2p) level of approximation. To explain the nature of such interactions, the atoms in molecules theory (AIM) in conjunction with reduced variational space self-consistent field (RVS) energy decomposition analysis were carried out. Based on the local virial theorem, an equation to decompose the total electronic energy density H(r b ) in two energy densities, (−G(r b )) and 1/4∇2ρ(r b ), was derived. These energy densities were linked with the RVS interaction energy components. Through the connection between both decomposition schemes, it was possible to conclude that the decrease in H(r b ) with the interaction strengthening observed in the HB as well as the XB complexes, is mainly due to the increase in the attractive electrostatic part of the interaction energy and in lesser extent to the increase in its covalent character, as is commonly considered.


AIM Energy decomposition Hydrogen/halogen bonds RVS Total electron energy density 



We acknowledge SECYT UNNE (Secretaría de Ciencia y Tecnología – Universidad Nacional del Nordeste), for financial support. E.L.A is a fellow researcher of CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), D.J.R.D. is a fellows of CONICET UNNE (Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional del Nordeste) and N.M.P. is a career researcher of CONICET, Argentine. This work was supported by the Grants PICTO-UNNE (Proyecto de Investigación Científica y Tecnológica Orientado- Universidad Nacional del Nordeste) 089 and PIP CONICET (Proyecto de Investigación Plurianual – Consejo Nacional de Investigaciones Científicas y Técnicas) 095.

Supplementary material

894_2012_1674_MOESM1_ESM.doc (84 kb)
ESM 1 (DOC 84 kb)


  1. 1.
    Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer, HeidelbergCrossRefGoogle Scholar
  2. 2.
    Legon AC (2010) The halogen bond: an interim perspective. Phys Chem Chem Phys 12:7736–7747. doi: 10.1039/C002129F CrossRefGoogle Scholar
  3. 3.
    Pauling L (1960) The nature of the chemical bond. Cornell University Press, IthacaGoogle Scholar
  4. 4.
    Gilli G, Gilli P (2000) Towards an unified hydrogen-bond theory. J Mol Struct 552:1–15. doi: 10.1016/S0022-2860(00)00454-3 CrossRefGoogle Scholar
  5. 5.
    Grabowski SJ (2011) What is the covalency of hydrogen bonding? Chem Rev 111:2597–2625. doi: 10.1021/cr800346f CrossRefGoogle Scholar
  6. 6.
    Bader R (1990) Atoms in molecules: a quantum theory. Oxford University Press, USAGoogle Scholar
  7. 7.
    Bader RFW, Essen H (1984) The characterization of atomic interactions. J Chem Phys 80:1943–1960. doi: 10.1063/1.446956 CrossRefGoogle Scholar
  8. 8.
    Jenkins S, Morrison I (2000) The chemical character of the intermolecular bonds of seven phases of ice as revealed by ab initio calculation of electron densities. Chem Phys Lett 317:97–102. doi: 10.1016/S0009-2614(99)01306-8 CrossRefGoogle Scholar
  9. 9.
    Arnold WD, Oldfield E (2000) The chemical nature of hydrogen bonding in proteins via NMR: J-couplings, chemical shifts, and AIM theory. J Am Chem Soc 122:12835–12841. doi: 10.1021/ja0025705 CrossRefGoogle Scholar
  10. 10.
    Espinosa E, Alkorta I, Elguero J, Molins E (2002) From weak to strong interactions: a comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H…F–Y systems. J Chem Phys 117:5529–5542. doi: 10.1063/1.1501133 CrossRefGoogle Scholar
  11. 11.
    Pakiari AH, Eskandari K (2006) The chemical nature of very strong hydrogen bonds in some categories of compounds. J Mol Struct (THEOCHEM) 759:51–60. doi: 10.1016/j.theochem.2005.10.040 CrossRefGoogle Scholar
  12. 12.
    David J, Guerra D, Restrepo A (2012) Structure, stability and bonding in the 1Au10 clusters. Chem Phys Lett 539–540:64–69. doi: 10.1016/j.cplett.2012.04.030 CrossRefGoogle Scholar
  13. 13.
    Grabowski SJ, Sokalski WA, Dyguda E, Leszczyński J (2006) Quantitative classification of covalent and noncovalent H-bonds. J Phys Chem B 110:6444–6446. doi: 10.1021/jp0600817 CrossRefGoogle Scholar
  14. 14.
    Grabowski SJ, Sokalski WA, Leszczynski J (2006) The possible covalent nature of N-H…O hydrogen bonds in formamide dimer and related systems: an ab initio study. J Phys Chem A 110:4772–4779. doi: 10.1021/jp055613i CrossRefGoogle Scholar
  15. 15.
    Ramírez F, Hadad CZ, Guerra D, David J, Restrepo A (2011) Structural studies of the water pentamer. Chem Phys Lett 507(4–6):229–233. doi: 10.1016/j.cplett.2011.03.084 CrossRefGoogle Scholar
  16. 16.
    Angelina EL, Peruchena NM (2011) Strength and nature of hydrogen bonding interactions in mono- and di-hydrated formamide complexes. J Phys Chem A 115:4701–4710. doi: 10.1021/jp1105168 CrossRefGoogle Scholar
  17. 17.
    Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566. doi: 10.1080/00268977000101561 CrossRefGoogle Scholar
  18. 18.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA TV Jr, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski G, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko GA, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision D01. Gaussian Inc, WallingfordGoogle Scholar
  19. 19.
    Blieger-König F, Schönbohn J (2002) AIM2000 Program Package, version 20, chemical adviser by RFW Bader. Buöro fur Innovative Software Streibel Biegler-König, GermanyGoogle Scholar
  20. 20.
    Stevens WJ, Fink WH (1987) Frozen fragment reduced variational space analysis of hydrogen bonding interactions. Application to the water dimer. Chem Phys Lett 139:15–22. doi: 10.1016/0009-2614(87)80143-4 CrossRefGoogle Scholar
  21. 21.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363. doi: 10.1002/jcc.540141112 CrossRefGoogle Scholar
  22. 22.
    Morokuma K (1977) Why do molecules interact? The origin of electron donor-acceptor complexes, hydrogen bonding and proton affinity. Acc Chem Res 10:294–300. doi: 10.1021/ar50116a004 CrossRefGoogle Scholar
  23. 23.
    Morokuma K, Kitaura K (1981) Energy decomposition analysis of molecular interactions. In: Politzer P, Truhlar DG (eds) Chemical applications of atomic and molecular electronic potentials. Plenum, New York, pp 215–242Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Emilio L. Angelina
    • 1
  • Darío J. R. Duarte
    • 1
  • Nélida M. Peruchena
    • 1
    Email author
  1. 1.Laboratorio de Estructura Molecular y Propiedades, Área de Química Física, Departamento de Química, Facultad de Ciencias Exactas y Naturales y AgrimensuraUniversidad Nacional del NordesteCorrientesArgentina

Personalised recommendations