Skip to main content

Advertisement

Log in

Stability and electronic properties of 3D covalent organic frameworks

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Covalent organic frameworks (COFs) are a class of covalently linked crystalline nanoporous materials, versatile for nanoelectronic and storage applications. 3D COFs, in particular, have very large pores and low mass densities. Extensive theoretical studies of their energetic and mechanical stability, as well as their electronic properties, have been carried out for all known 3D COFs. COFs are energetically stable and their bulk modulus ranges from 3 to 20 GPa. Electronically, all COFs are semiconductors with band gaps corresponding to the HOMO–LUMO gaps of the building units.

 3D covalent organic frameworks

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cote AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM (2005) Science 310(5751):1166–1170

    Article  CAS  Google Scholar 

  2. Cote AP, El-Kaderi HM, Furukawa H, Hunt JR, Yaghi OM (2007) J Am Chem Soc 129:12914–12915

    Article  CAS  Google Scholar 

  3. El-Kaderi HM, Hunt JR, Mendoza-Cortes JL, Cote AP, Taylor RE, O’Keeffe M, Yaghi OM (2007) Science 316(5822):268–272

    Article  CAS  Google Scholar 

  4. Wan S, Guo J, Kim J, Ihee H, Jiang DL (2008) Angew Chem Int Ed 47(46):8826–8830

    Article  CAS  Google Scholar 

  5. Furukawa H, Yaghi OM (2009) J Am Chem Soc 131(25):8875–8883

    Article  CAS  Google Scholar 

  6. Keskin S (2012) J Phys Chem C 116(2):1772–1779

    Article  CAS  Google Scholar 

  7. Ding S-Y, Gao J, Wang Q, Zhang Y, Song W-G, Su C-Y, Wang W (2011) J Am Chem Soc 133(49):19816–19822

    Article  CAS  Google Scholar 

  8. Ockwig NW, Delgado-Friedrichs O, O’Keeffe M, Yaghi OM (2005) Acc Chem Res 38(3):176–182

    Article  CAS  Google Scholar 

  9. Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Nature 423(6941):705–714

    Article  CAS  Google Scholar 

  10. Tylianakis E, Klontzas E, Froudakis GE (2011) Nanoscale 3(3):856–869

    Article  CAS  Google Scholar 

  11. Assfour B, Seifert G (2010) Microporous Mesoporous Mater 133(1–3):59–65

    Article  CAS  Google Scholar 

  12. Schmid R, Tafipolsky M (2008) J Am Chem Soc 130(38):12600–12601

    Article  CAS  Google Scholar 

  13. Garberoglio G, Vallauri R (2008) Microporous Mesoporous Mater 116(1–3):540–547

    Article  CAS  Google Scholar 

  14. Han SS, Mendoza-Cortes JL, Goddard WA (2009) Chem Soc Rev 38(5):1460–1476

    Article  CAS  Google Scholar 

  15. Tylianakis E, Klontzas E, Froudakis GE (2009) Nanotechnology 20:9

    Article  Google Scholar 

  16. Klontzas E, Tylianakis E, Froudakis GE (2008) J Phys Chem C 112(24):9095–9098

    Article  CAS  Google Scholar 

  17. Garberoglio G (2007) Langmuir 23:12154–12158

    Article  CAS  Google Scholar 

  18. Lan JH, Cao DP, Wang WC (2010) J Phys Chem C 114(7):3108–3114

    Article  CAS  Google Scholar 

  19. Lan JH, Cao DP, Wang WC, Smit B (2010) ACS Nano 4(7):4225–4237

    Article  CAS  Google Scholar 

  20. Li F, Zhao JJ, Johansson B, Sun LX (2010) Int J Hydrogen Energy 35(1):266–271

    Article  CAS  Google Scholar 

  21. Wu MM, Wang Q, Sun Q, Jena P, Kawazoe Y (2010) J Chem Phys 133:154706

    Article  Google Scholar 

  22. Choi YJ, Lee JW, Choi JH, Kang JK (2008) Appl Phys Lett 92:173102

    Article  Google Scholar 

  23. Zou XL, Zhou G, Duan WH, Choi K, Ihm J (2010) J Phys Chem C 114(31):13402–13407

    Article  CAS  Google Scholar 

  24. Klontzas E, Tylianakis E, Froudakis GE (2009) J Phys Chem C 113(50):21253–21257

    Article  CAS  Google Scholar 

  25. Klontzas E, Tylianakis E, Froudakis GE (2010) Nano Lett 10(2):452–454

    Article  CAS  Google Scholar 

  26. Tilford RW, Mugavero SJ, Pellechia PJ, Lavigne JJ (2008) Adv Mater 20(14):2741–2746

    Article  CAS  Google Scholar 

  27. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Nature 402(6759):276–279

    Article  CAS  Google Scholar 

  28. Feng X, Chen L, Honsho Y, Saengsawang O, Liu L, Wang L, Saeki A, Irle S, Seki S, Dong Y, Jiang D (2012) Adv Mater 24(22):3026–3031

    Article  CAS  Google Scholar 

  29. Feng X, Liu L, Honsho Y, Saeki A, Seki S, Irle S, Dong Y, Nagai A, Jiang D (2012) Angew Chem Int Ed 51(11):2618–2622

    Article  CAS  Google Scholar 

  30. Wan S, Guo J, Kim J, Ihee H, Jiang DL (2009) Angew Chem Int Ed 48(30):5439–5442

    Article  CAS  Google Scholar 

  31. Spitler EL, Dichtel WR (2010) Nat Chem 2:672–677

    Article  CAS  Google Scholar 

  32. Ding XS, Guo J, Feng XA, Honsho Y, Guo JD, Seki S, Maitarad P, Saeki A, Nagase S, Jiang DL (2011) Angew Chem Int Ed 50(6):1289–1293

    Article  CAS  Google Scholar 

  33. Wan S, Gandara F, Asano A, Furukawa H, Saeki A, Dey SK, Liao L, Ambrogio MW, Botros YY, Duan X, Seki S, Stoddart JF, Yaghi OM (2011) Chem Mater 23(18):4094–4097

    Article  CAS  Google Scholar 

  34. Han SS, Furukawa H, Yaghi OM, Goddard WA III (2008) J Am Chem Soc 130(35):11580–11581

    Article  CAS  Google Scholar 

  35. Mendoza-Cortes JL, Han SS, Furukawa H, Yaghi OM, Goddard WA III (2010) J Phys Chem A 114(40):10824–10833

    Article  CAS  Google Scholar 

  36. Colson JW, Woll AR, Mukherjee A, Levendorf MP, Spitler EL, Shields VB, Spencer MG, Park J, Dichtel WR (2011) Science 332(6026):228–231

    Article  CAS  Google Scholar 

  37. Tilford RW, Gemmill WR, zur Loye H-C, Lavigne JJ (2006) Chem Mater 18(22):5296–5301

    Google Scholar 

  38. Blunt MO, Russell JC, Champness NR, Beton PH (2010) Chem Commun 46(38):7157–7159

    Article  CAS  Google Scholar 

  39. Berlanga I, Ruiz-Gonzalez ML, Gonzalez-Calbet JM, Fierro JLG, Mas-Balleste R, Zamora F (2011) Small 7(9):1207–1211

    Article  CAS  Google Scholar 

  40. Bunck DN, Dichtel WR (2012) Angew Chem Int Ed 51(8):1885–1889

    Article  CAS  Google Scholar 

  41. Nagai A, Guo Z, Feng X, Jin S, Chen X, Ding X, Jiang D (2011) Nat Commun 2:536

    Article  Google Scholar 

  42. Kalidindi SB, Yusenko K, Fischer RA (2011) Chem Commun 47(30):8506–8508

    Article  CAS  Google Scholar 

  43. O’Keeffe M, Peskov MA, Ramsden SJ, Yaghi OM (2008) Acc Chem Res 41(12):1782–1789

    Article  Google Scholar 

  44. Hunt JR, Doonan CJ, LeVangie JD, Cote AP, Yaghi OM (2008) J Am Chem Soc 130(36):11872–11873

    Article  CAS  Google Scholar 

  45. Uribe-Romo FJ, Hunt JR, Furukawa H, Klock C, O’Keeffe M, Yaghi OM (2009) J Am Chem Soc 131(13):4570–4571

    Article  CAS  Google Scholar 

  46. Lukose B, Kuc A, Heine T (2011) Chem Eur J 17(8):2388–2392

    CAS  Google Scholar 

  47. Lukose B, Kuc A, Frenzel J, Heine T (2010) Beilstein J Nanotechnol 1:60–70

    Article  CAS  Google Scholar 

  48. Lukose B, Supronowicz B, Petkov PS, Frenzel J, Kuc A, Seifert G, Vayssilov GN, Heine T (2011) Phys Stat Sol b249(2):335–342

    Google Scholar 

  49. Oliveira AF, Seifert G, Heine T, Duarte HA (2009) J Braz Chem Soc 20(7):1193–1205

    Article  CAS  Google Scholar 

  50. Seifert G, Porezag D, Frauenheim T (1996) Int J Quantum Chem 58(2):185–192

    Article  CAS  Google Scholar 

  51. Heine T, Rapacioli M, Patchkovskii S, Frenzel J, Koester AM, Calaminici P, Escalante S, Duarte HA, Flores R, Geudtner G, Goursot A, Reveles JU, Vela A, Salahub DR (2009) deMon-nano. deMon-nano edn. edn. deMon,

  52. DFTB+ - Density Functional based Tight binding (and more), BCCMS, Bremen, Germany. Web: http://www.dftb-plus.info/

  53. Zhechkov L, Heine T, Patchkovskii S, Seifert G, Duarte HA (2005) J Chem Theor Comput 1(5):841–847

    Article  CAS  Google Scholar 

  54. Monkhorst HJ, Pack JD (1976) Phys Rev B 13(12):5188–5192

    Article  Google Scholar 

  55. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77(18):3865–3868

    Article  CAS  Google Scholar 

  56. Van Lenthe E, Baerends EJ (2003) J Comput Chem 24(9):1142–1156

    Article  Google Scholar 

  57. Velde GT, Bickelhaupt FM, Baerends EJ, Guerra CF, Van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22(9):931–967

    Article  Google Scholar 

  58. ADF2009.01,SCM,Theoretical Chemistry VU (2009) Amsterdam, The Netherlands

  59. Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van De Streek J (2006) J Appl Crystallogr 39:453–457

    Article  CAS  Google Scholar 

  60. http://www.ccdc.cam.ac.uk/products/mercury/ Mercury—Crystal Structure Visualisation and Exploration Made Easy. Cambridge Crystallographic Data Centre. http://www.ccdc.cam.ac.uk/products/mercury/

  61. Amirjalayer S, Snurr RQ, Schmid R (2012) J Phys Chem C 116(7):4921–4929

    Article  CAS  Google Scholar 

  62. Kuc A, Enyashin A, Seifert G (2007) J Phys Chem B 111(28):8179–8186

    Article  CAS  Google Scholar 

  63. Yang LM, Vajeeston P, Ravindran P, Fjellvag H, Tilset M (2010) Inorg Chem 49(22):10283–10290

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binit Lukose.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(TXT 24 kb)

ESM 2

(TXT 24 kb)

ESM 3

(TXT 29 kb)

ESM 4

(TXT 24 kb)

ESM 5

(TXT 24 kb)

ESM 6

(TXT 35 kb)

ESM 7

(TXT 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukose, B., Kuc, A. & Heine, T. Stability and electronic properties of 3D covalent organic frameworks. J Mol Model 19, 2143–2148 (2013). https://doi.org/10.1007/s00894-012-1671-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1671-1

Keywords

Navigation