Skip to main content
Log in

Boron nitride nanotube based nanosensor for acetone adsorption: a DFT simulation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We have investigated the adsorption properties of acetone on zigzag single-walled BNNTs using density functional theory (DFT) calculations. The results obtained show that acetone is strongly bound to the outer surface of a (5,0) BNNT on the top site directly above the boron atom, with a binding energy of −96.16 kJ mol−1 and a B–O binding distance of 1.654 Å. Our first-principles calculations also predict that the ability of zigzag BNNTs to adsorb acetone is significantly stronger than the corresponding ability of zigzag CNTs. A comparative investigation of BNNTs with different diameters indicated that the ability of the side walls of the tubes to adsorb acetone decreases significantly for nanotubes with larger diameters. Furthermore, the stability of the most stable acetone/BNNT complex was tested using ab initio molecular dynamics simulation at room temperature.

First-principles calculations predict that acetone is strongly bound to the outer surfaces of BNNTs with a binding energy of −107.14 kJ mol−1. Comparison with the corresponding adsorption on CNTs reveals that the ability of BNNTs to adsorb acetone is about threefold that of CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Iijima S (1991) Nature (London) 354:56

    Article  CAS  Google Scholar 

  2. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Science 287:622

    Article  CAS  Google Scholar 

  3. Collins PG, Bradley K, Ishigami M, Zettl A (2000) Science 87:1801

    Article  Google Scholar 

  4. Kirk RE, Othmer DF, Kroschwitz JI (2007) Kirk–Othmer concise encyclopedia of chemical technology, 5th edn. Wiley, New York

  5. Singh HB, Ohara D, Herlth D, Sachse W, Blake DR, Bradshaw JD, Kanakidou M, Crutzen PJJ (1994) Geophys Res (Atmos) 99(D1):1805

    Google Scholar 

  6. VanItallie TB, Nufert TH (2003) Nutr Rev 61(10):327

    Article  Google Scholar 

  7. Federici MO, Benedetti MM (2006) Diabetes Res Clin Pract 74:S77

    Article  CAS  Google Scholar 

  8. Robinson JA, Snow ES, Badescu SC, Reinecke TL, Perkins FK (2006) Nano Lett 6(8):1747

    Article  CAS  Google Scholar 

  9. Lu Y, Partridge C, Meyyappan M, Li JJ (2006) Electroanal Chem 593(1–2):105

    CAS  Google Scholar 

  10. Snow ES, Perkins FK (2005) Nano Lett 5(12):2414

    Article  CAS  Google Scholar 

  11. Parikh K, Cattanach K, Rao R, Suh D-S, Wu A, Manohar SK (2006) Sens Actuators B Chem B113(1):55

    Article  CAS  Google Scholar 

  12. Guirado-Lopez RA, Sanchez M, Rincon ME (2007) J Phys Chem C 111(1):57

    Article  CAS  Google Scholar 

  13. Kazachkin D, Nishimura Y, Irle S, Morokuma K, Vidic RD, Borguet E (2008) Langmuir 24:7848

    Article  CAS  Google Scholar 

  14. Chakrapani N, Zhang YM, Nayak SK, Moore JA, Carroll DL, Choi YY, Ajayan PM (2003) J Phys Chem B 107(35):9308

    Article  CAS  Google Scholar 

  15. Shih Y-H, Li M-S (2008) J Hazardous Mater 154(1–3):21–28

    Article  CAS  Google Scholar 

  16. Wu X, An W, Zeng XC (2006) J Am Chem Soc 128(36):12001

    Article  CAS  Google Scholar 

  17. An W, Wu X, Yang JL, Zeng XC (2007) J Phys Chem C 111(38):14105

    Article  CAS  Google Scholar 

  18. Chen X, Wu P, Rousseas M, Okawa D, Gartner Z, Zettl A, Bertozzi CR (2009) J Am Chem Soc 131(3):890

    Article  CAS  Google Scholar 

  19. Blase X, Rubio A, Louie SG, Cohen ML (1994) Europhys Lett 28:335

    Article  CAS  Google Scholar 

  20. Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Science 269:966

    Article  CAS  Google Scholar 

  21. Hernandez E, Goze C, Bernier P, Rubio A (1998) Phys Rev Lett 80:4502

    Article  CAS  Google Scholar 

  22. Chang CW, Han WQ, Zettl A (2005) Appl Phys Lett 86:173102

    Article  Google Scholar 

  23. Rubio A, Corkill JL, Cohen ML (1994) Phys ReV B 49:5081

    Article  CAS  Google Scholar 

  24. Bengu E, Marks LD (2001) Phys Rev Lett 86:2385

    Article  CAS  Google Scholar 

  25. Xiang HJ, Yang JL, Hou JG, Zhu QS (2003) Phys Rev B 68:035427

    Article  Google Scholar 

  26. Loiseau A, Willaime F, Demoncy N, Hug G, Pascard H (1996) Phys Rev Lett 76:4737

    Article  CAS  Google Scholar 

  27. Wanga R, Zhu R, Zhang D (2008) Chem Phys Lett 467:131

    Article  Google Scholar 

  28. Wang R, Zhang D (2008) Aus J Chem 61(12):941

    Article  CAS  Google Scholar 

  29. Ordejón P, Artecho E, Soler JM (1996) Phys Rev B 53:10441

    Article  Google Scholar 

  30. Soler JM, Artecho E, Gale JD, Garcýa A, Junqera J, Ordejón P, Sanchez-Portal D (2002) J Phys Condens Matter 14:2745

    Article  CAS  Google Scholar 

  31. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  32. Lu AJ, Pan BC (2005) Phys Rev B 71:165416

    Article  Google Scholar 

  33. Ganji MD (2008) Phys Lett A 372:3277

    Article  CAS  Google Scholar 

  34. Ganji MD (2008) Nanotechnology 19:025709

    Article  CAS  Google Scholar 

  35. Gowtham S, Scheicher RH, Pandey R, Karna SP, Ahuj R (2008) Nanotechnology 19:125701

    Article  CAS  Google Scholar 

  36. Pupysheva OV, Farajian AA, Yakobson BI (2008) Nano Lett 8:3

    Article  Google Scholar 

  37. Ganji MD (2009) Diamond Related Mater 18:662

    Article  CAS  Google Scholar 

  38. Ganji MD, Tajbakhsh M, Laffafchi M (2010) Sol State Sci 12:1547

    Article  CAS  Google Scholar 

  39. Ganji MD, Mirnejad A, Najafi AA (2010) Sci Tech Adv Mater 11:045001

    Article  Google Scholar 

  40. Ganji MD (2009) Phys E 41:1433

    Article  CAS  Google Scholar 

  41. Ganji MD, Ahmadian N, Goodarzi M, Khorrami HA (2011) J Comp Theor Nanosci 8(8):1392–1399

    Article  CAS  Google Scholar 

  42. Ganji MD, Mohseni M, Goli O (2009) J Mol Structure: Theochem 913:54

    Article  CAS  Google Scholar 

  43. Ganji MD (2010) Fullerenes Nanotubes Carbon Nanostruct 18:24

    Article  CAS  Google Scholar 

  44. Ganji MD, Rezvani M, Shokry M, Mirnejad A (2011) Fullerenes Nanotubes Carbon Nanostruct 19:421

    Article  CAS  Google Scholar 

  45. Ahmadian N, Darvish Ganji M, Laffafchi M (2012) Mater Chem Phys 135:569

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of this work provided by the Azad University of Ghaemshahr.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Darvish Ganji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganji, M.D., Rezvani, M. Boron nitride nanotube based nanosensor for acetone adsorption: a DFT simulation. J Mol Model 19, 1259–1265 (2013). https://doi.org/10.1007/s00894-012-1668-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1668-9

Keywords

Navigation