Skip to main content
Log in

The role of glycine residues at the C-terminal peptide segment in antinociceptive activity: a molecular dynamics simulation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Elucidating structural determinants in the functional regions of toxins can provide useful knowledge for designing novel analgesic peptides. Glycine residues at the C-terminal region of the neurotoxin BmK AGP-SYPU2 from the scorpion Buthus martensii Karsch (BmK) have been shown to be crucial to its analgesic activity. However, there has been no research on the structure–function relationship between the C-terminal segment of this toxin and its analgesic activity. To address this issue, we performed three MD simulations: one on the native structure and the other two on mutants of that structure. Results of these calculations suggest that the existence of glycine residues at the C-terminal segment stabilizes the protruding topology of the NC domain, which is considered an important determinant of the analgesic activity of BmK AGP-SYPU2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Couraud F, Jover E, Dubois JM, Rochat H (1982) Two types of scorpion toxin receptor sites, one related to the activation, the other to the inactivation of the action potential sodium channel. Toxicon 20:9–16

    Article  CAS  Google Scholar 

  2. Possani LD, Merino E, Corona M, Bolivar F, Becerril B (2000) Peptides and genes coding for scorpion toxins that affect ion-channels. Biochimie 82:861–868

    Article  CAS  Google Scholar 

  3. Liu YF, Ma RL, Wang SL, Duan ZY, Zhang JH, Wu LJ, Wu CF (2003) Expression of an antitumor-analgesic peptide from the venom of Chinese scorpion Buthus martensii Karsch in Escherichia coli. Protein Expr Purif 27(2):253–258

    Google Scholar 

  4. Cui Y, Guo GL, Ma L, Hu N, Song YB, Liu YF, Wu CF, Zhang JH (2010) Strucsture and function relationship of toxin from Chinese scorpion Buthus martensii Karsch (BmKAGAP): gaining insight into related sites of analgesic activity. Peptides 31:995–1000

    Google Scholar 

  5. Gordon D, Martin-Eauclaire MF, Cestèle S, Kopeyan C, Carlier E, Khalifa RB, Pelhate M, Rochat H (1996) Scorpion toxins affecting sodium current inactivation bind to distinct homologous receptor sites on rat brain and insect sodium channels. J Bio Chem 271:8034–8045

    Article  CAS  Google Scholar 

  6. Gordon D, Savarin P, Gurevitz M, Zinn-Justin S (1998) Functional anatomy of scorpion toxins affecting sodium channels. Toxin Rev 17:131–159

    Article  CAS  Google Scholar 

  7. Housset D, Habersetzer-Rochat C, Astier JP, Fontecilla-Camps JC (1994) Crystal structure of toxin II from the scorpion Androctonus australis Hector refined at 1.3 Å resolution. J Mol Bio 238:88–103

    Google Scholar 

  8. Li HM, Wang DC, Zeng ZH, Jin L, Hu RQ (1996) Crystal structure of an acidic neurotoxin from scorpion Buthus martensii Karsch at 1.85 Å resolution. J Mol Bio 261:415–431

    Google Scholar 

  9. Karbat I, Frolow F, Froy O, Gilles N, Cohen L, Turkov M, Gordon D, Gurevit M (2004) Molecular basis of the high insecticidal potency of scorpion alpha-toxins. J Biol Chem 279:31679–31686

    Article  CAS  Google Scholar 

  10. Zilberberg N, Gordon D, Pelhate M, Adams ME, Norris TM, Zlotkin E, Gurevitz M (1996) Functional expression and genetic alteration of an alpha scorpion neurotoxin. Biochemistry 35:10215–10222

    Article  CAS  Google Scholar 

  11. Zilberberg N, Froy O, Loret E, Cestele S, Arad D, Gordon D, Gurevitz M (1997) Identification of structural elements of a scorpion alpha-neurotoxin important for receptor site recognition. J Biol Chem 272:14810–14816

    Article  CAS  Google Scholar 

  12. Sun YM, Liu W, Zhu RH, Goudet C, Tytgat J, Wang DC (2002) Roles of disulfide bridges in scorpion toxin BmK M1 analyzed by mutagenesis. J Pept Res 60:247–256

    Article  CAS  Google Scholar 

  13. Wang CG, Gilles N, Hamon A, Le Gall F, Stankiewicz M, Pelhate M, Xiong YM, Wang DC, Chi CW (2003) Exploration of the functional site of a scorpion alpha-like toxin by site-directed mutagenesis. Biochemistry 42:4699–4708

    Article  CAS  Google Scholar 

  14. Sun YM, Bosmans F, Zhu RH, Goudet C, Xiong YM, Tytgat J et al (2003) Importance of the conserved aromatic residues in the scorpion alpha-like toxin BmK M1: the hydrophobic surface region revisited. J Biol Chem 278:24125–24131

    Article  CAS  Google Scholar 

  15. Possani LD, Becerril B, Delepierre M, Tytgat J (1999) Scorpion toxins specific for Na+-channels. Eur J Biochem 264:287–300

    Article  CAS  Google Scholar 

  16. Mouhat S, Jouirou B, Mosbah A, De Waard M, Sabatier JM (2004) Diversity of folds in animal toxins acting on ion channels. J Bio Chem 378:717–726

    CAS  Google Scholar 

  17. Vega RCR, Possani LD (2005) Overview of scorpion toxins specific for Na+ channels and related peptides: biodiversity, structure–function relationships and evolution. Toxicon 46:831–844

    Google Scholar 

  18. Karbat I, Kahn R, Cohen L, Ilan N, Gilles N, Corzo G, Froy O, Gur M, Albrecht G, Heinemann SH, Gordon D, Gurevitz M (2007) The unique pharmacology of the scorpion alpha-like toxin Lqh3 is associated with its flexible C-tail. FEBS J 274:1918–1931

    Article  CAS  Google Scholar 

  19. Liu LH, Bosmans F, Maertens C, Zhu RH, Wang DC, Tytgat J (2005) Molecular basis of the mammalian potency of the scorpion alpha-like toxin, BmK M1. FASEB J 19:594–596

    Google Scholar 

  20. Kahn R, Karbat I, Ilan N, Cohen L, Sokolov S, Catterall WA, Gordon D, Gurevitz M (2009) Molecular requirements for recognition of brain voltage-gated sodium channels by scorpion alpha-toxins. J Bio Chem 284:20684–20691

    Article  CAS  Google Scholar 

  21. Gordon D, Karbat I, Ilan N, Cohen L, Kahn R, Gilles N, Dong K, Stühmer W, Tytgat J, Gurevitz M (2007) The differential preference of scorpion alpha-toxins for insect or mammalian sodium channels: implications for improved insect control. Toxicon 49:452–472

    Article  CAS  Google Scholar 

  22. Goudet C, Chi CW, Tytgat J (2002) An overview of toxins and genes from the venom of the Asian scorpion Buthus martensii Karsch. Toxicon 40:1239–1258

    Google Scholar 

  23. Zhang R, Yang Z, Liu YF, Cui Y, Zhang JH (2011) Purification, characterization and cDNA cloning of an analgesic peptide from the Chinese scorpion Buthus martensii Karsch (BmK AGP-SYPU2). Mol Biol (Mosk) 45(6):956–962

    Google Scholar 

  24. Zhu J, Tong XT, Cao CY, Wu G et al (2010) Solution structure of BmK αTx11, a toxin from the venom of the Chinese scorpion Buthus martensii Karsch. Biochem Biophys Res Commun 391:627–633

    Google Scholar 

  25. Zhang R, Yang Z, Liu YF, Cui Y, Zhang JH (2010) Soluble expression, purification and the role of C-terminal glycine residues in scorpion toxin BmK AGP-SYPU2. BMB Rep 43:801–806

    Article  CAS  Google Scholar 

  26. Schrödinger, LLC (2012) The PyMOL molecular graphics system. Schrödinger, LLC, New York

  27. Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Hayik S, Roitberg A, Seabra G, Swails J, Goetz AW, Kolossvai I, Wong KF, Paesani F, Vanicek J, Wolf RM, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Salomon-Ferrer R, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2012) AMBER 12. University of California, San Francisco

  28. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong GM, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comp Chem 24:1999–2012

    Article  CAS  Google Scholar 

  29. Jorgensen WL, Chandraskhar J, Madura J, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  30. Rychaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comp Phys 23:327–341

    Google Scholar 

  31. Darden T, York D et al (1993) Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  32. Rajasekaran M, Abirami S, Chen C (2011) Effects of single nucleotide polymorphisms on human N-acetyltransferase 2 structure and dynamics by molecular dynamics simulation. PLoS One 6:e25801

    Google Scholar 

  33. Anderson PC, Daggett V (2009) Principles of ligand binding within a completely buried cavity in HIF2α PAS-B. J Am Chem Soc 131:17647–17654

    Article  Google Scholar 

  34. Cordomi A, Ramon E, Garriga P, Perez JJ (2008) Molecular dynamics simulations of rhodopsin point mutants at the cytoplasmic side of helices 3 and 6. J Biomol Struct Dyn 25:573–587

    Article  CAS  Google Scholar 

  35. Blaise MC, Bhattacharyya D, Sowdhamini R, Pradhan N (2005) Structural consequences of D481N/K483Q mutation at glycine binding site of NMDA ionotropic glutamate receptors: a molecular dynamics study. J Biomol Struct Dyn 22:399–410

    Article  CAS  Google Scholar 

  36. Hao G-F, Yang G-F (2010) The role of Phe82 and Phe351 in auxin-induced substrate perception by TIR1 ubiquitin ligase: a novel insight from molecular dynamics simulations. PLoS One 5:e10742

    Article  Google Scholar 

  37. Wang J, Yarov-Yarovoy V, Kahn R, Gordon D, Gurevitz M, Scheuer T, Catterall WA (2011) Mapping the receptor site for alpha-scorpion toxins on a Na+ channel voltage sensor. Proc Natl Acad Sci USA 108:15426–15431

    Google Scholar 

  38. Chen R, Chung SH (2012) Binding modes and functional surface of anti-mammalian scorpion α-toxins to sodium channels. Biochemistry 51:7775–7782

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Doctor Startup Fund of Liaoning Province (20101111), the National Natural Science Foundation of China (21103113), and the National Science Foundation for Postdoctoral Scientists of China (2011M500577). The authors would like to thank Dr. David A. Case for kindly providing us with free software packages.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Hai Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, YS., Zhang, R., Xu, Y. et al. The role of glycine residues at the C-terminal peptide segment in antinociceptive activity: a molecular dynamics simulation. J Mol Model 19, 1295–1299 (2013). https://doi.org/10.1007/s00894-012-1666-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1666-y

Keywords

Navigation