Journal of Molecular Modeling

, Volume 19, Issue 3, pp 1153–1166 | Cite as

Specificities of boron disubstituted sumanenes

  • Stevan Armaković
  • Sanja J. Armaković
  • Jovan P. Šetrajčić
  • Ljubiša D. Džambas
Original Paper


In this article we focused on computational research of sumanenes disubstituted by boron where the two carbon atoms are substituted by two boron atoms. Disubstitution of rim carbon atoms with boron atoms significantly affected the geometry of the bowl. The main stability factors were used to determine the stability of isomers. The most stable, the shallowest and the deepest isomers were subjected to further study of NMR parameters, chemical shielding and NICS, aromaticity, bowl to bowl inversion barrier and NBO/NPA analysis. The introduction of boron atoms significantly affected the above parameters, changing the aromatic nature of rings, reducing bowl to bowl inversion barrier and produced charge transfer. The NICS are correlated with bowl depth having the result that the function of the fourth degree of bowl depth does not only correlate well to the bowl to bowl inversion barrier with bowl depth, but also finely correlates the change of the NICS and NICSzz with bowl depth.


Boron disubstituted sumanenes Bowl to bowl inversion barrier NMR parameters NBO/NPA analysis 



We express our gratitude to Professor Enrique Louis Cereceda, Departamento de Fisica Aplicada, Universidad de Alicante and Professor Emilio San Fabián Maroto, Departamento de Química Física, Universidad de Alicante, for help and access to Gaussian 03. Without their support we would not be able to conduct research.

We also express our gratitude to our dear friend and colleague Igor Vragović, Departmento de Fisica Aplicada, Universidad de Alicante for kind support and very useful guides.

This work is done within the project of the Ministry of Education and Science of Republic of Serbia grant no. OI 171039.


  1. 1.
    Amaya T, Hirao T (2011) A molecular bowl sumanene. Chem Commun 47:10524–10535CrossRefGoogle Scholar
  2. 2.
    Sakurai H, Daiko T, Hirao T (2003) A synthesis of sumanene, a fullerene fragment. Science 301:1878–1878CrossRefGoogle Scholar
  3. 3.
    Bianco A (2004) Carbon nanotubes for the delivery of therapeutic molecules. Expert Opin Drug Deliv 1:57–65CrossRefGoogle Scholar
  4. 4.
    Lee H-J, Choi WS, Nguyen T, Lee YB, Lee H (2011) An easy method for direct metal coordination reaction on unoxidized single-walled carbon nanotubes. Carbon 49:5150–5157CrossRefGoogle Scholar
  5. 5.
    Yeung CS, Wang YA (2011) Lewis acidity of Pt-doped buckybowls, fullerenes, and single-walled carbon nanotubes. J Phys Chem C 115:7153–7163CrossRefGoogle Scholar
  6. 6.
    Vostrowsky O, Hirsch A (2006) Heterofullerenes. Chem Rev 106:5191–5207CrossRefGoogle Scholar
  7. 7.
    Denis PA (2008) Theoretical investigation of nitrogen disubstituted corannulenes. J Mol Struct (THEOCHEM) 865:8–13CrossRefGoogle Scholar
  8. 8.
    Cauët E, Jacquemin D (2012) A theoretical spectroscopy investigation of oxosumanenes. Chem Phys Lett 519:49–53CrossRefGoogle Scholar
  9. 9.
    Sakurai H, Daiko T, Sakane H, Amaya T, Hirao T (2005) Structural elucidation of sumanene and generation of its benzylic anions. J Am Chem Soc 127:11580–11581CrossRefGoogle Scholar
  10. 10.
    Mehta G, Shah SR, Ravikumar K (1993) Towards the design of tricyclopenta[def, jk/, pqr]triphenylene (’sumanene’): a ‘bowl-shaped‘hydrocarbon featuring a structural motif Present in C60 (buckminsterfullerene). J Chem Soc Chem Commun 12:1006–1008CrossRefGoogle Scholar
  11. 11.
    Silverstein RM, Webster FX (1997) Spectrometric identification of organic compounds. Wiley, New YorkGoogle Scholar
  12. 12.
    Ghafouri R, Anafcheh M (2012) A computational NICS and 13C NMR characterization of C60-nSin heterofullerenes (n = 1, 2, 6, 12, 20, 24, 30). J Clust Sci 23:469–480CrossRefGoogle Scholar
  13. 13.
    Corminboeuf C, Fowler PW, Heine T (2002) 13C NMR patterns of C36H2x fullerene hydrides. Chem Phys Lett 361:405–410CrossRefGoogle Scholar
  14. 14.
    Anafcheh M, Hadipour NL (2011) A computational NICS and 13C NMR characterization of BN-substituted 60C fullerenes. Phys E 44:400–404CrossRefGoogle Scholar
  15. 15.
    Schleyer PVR, Maerker C, Dransfeld A, Jiao H, Van Eikema Hommes NJR (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318CrossRefGoogle Scholar
  16. 16.
    Goldfuss B, Von Ragué SP (1997) Aromaticity in group 14 metalloles: structural, energetic, and magnetic criteria. Organometallics 16:1543–1552CrossRefGoogle Scholar
  17. 17.
    Jiao H, Von Ragué SP, Mo Y, McAllister MA, Tidwell TT (1997) Magnetic evidence for the aromaticity and antiaromaticity of charged fluorenyl, indenyl, and cyclopentadienyl systems. J Am Chem Soc 119:7075–7083CrossRefGoogle Scholar
  18. 18.
    Zywietz TK, Jiao H, Schleyer PVR, De Meijere A (1998) Aromaticity and antiaromaticity in oligocyclic annelated five-membered ring systems. J Org Chem 63:3417–3422CrossRefGoogle Scholar
  19. 19.
    Becke AD (1988) Density-fnnctional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  20. 20.
    Lee C, Yang W, Parr RG (1988) Development of the Colic-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  21. 21.
    Wolinski K, Hinton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112:8251–8260CrossRefGoogle Scholar
  22. 22.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven JRT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian Inc, Wallingford, CTGoogle Scholar
  23. 23.
    Pearson RG (1989) Absolute electronegativity and hardness: applications to organic chemistry. J Org Chem 54:1423–1430CrossRefGoogle Scholar
  24. 24.
    Parr RG, Chattaraj PK (1991) Principle of maximum hardness. J Am Chem Soc 113:1854–1855CrossRefGoogle Scholar
  25. 25.
    Chandrakumar KRS, Ghanty TK, Ghosh SK (2004) Relationship between ionization potential, polarizability, and softness: a case study of lithium and sodium metal clusters. J Phys Chem A 108:6661–6666CrossRefGoogle Scholar
  26. 26.
    Chattaraj PK, Lee H, Parr RG (1991) HSAB principle. J Am Chem Soc 113:1855–1856CrossRefGoogle Scholar
  27. 27.
    Corminboeuf C, Heine T, Seifert G, Von Ragué SP, Weber J (2004) Induced magnetic fields in aromatic [n]-annulenes—interpretation of NICS tensor components. Phys Chem Chem Phys 6:273–276CrossRefGoogle Scholar
  28. 28.
    Scott LT, Hashemi MM, Bratcher MS (1992) Corannulene bowl-to-bowl inversion is rapid at room temperature. J Am Chem Soc 114:1920–1921CrossRefGoogle Scholar
  29. 29.
    Wu Y-T, Siegel JS (2006) Aromatic molecular-bowl hydrocarbons, synthetic derivatives, their structures, and physical properties. Chem Rev 106:4843–4867CrossRefGoogle Scholar
  30. 30.
    Amaya T, Sakane H, Muneishi T, Hirao T (2008) Bowl-to-bowl inversion of sumanene derivatives. Chem Commun 6:765–767CrossRefGoogle Scholar
  31. 31.
    Amaya T, Sakane H, Nakata T, Hirao T (2010) Pure Appl Chem 82:969–978CrossRefGoogle Scholar
  32. 32.
    Peng C, Schlegel HB (1993) Combining synchronous transit and quasi-newton methods for finding transition states. Isr J Chem 33:449–454Google Scholar
  33. 33.
    Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) Using redundant coordinates to optimize equilibrium geometries and transition states. J Comput Chem 17:49–56CrossRefGoogle Scholar
  34. 34.
    Bürgi H-B, Dubler-Steudle KC (1988) Empirical potential energy surfaces relating structure and activation energy. 1. Metallacyclopentene ring inversion in (s-cis-η4-butadiene)metallocene complexes and related compounds. J Am Chem Soc 110:4953–4957CrossRefGoogle Scholar
  35. 35.
    Priyakumar UD, Sastry GN (2001) Heterobucky bowls: a theoretical study on the structure, bowl-to-bowl inversion barrier, bond length alternation, structure-inversion barrier relationship, stability, and synthetic feasibility. J Org Chem 66:6523–6530CrossRefGoogle Scholar
  36. 36.
    Armaković S, Armaković SJ, Šetrajčić JP, Šetrajčić IJ (2012) Active components of frequently used β-blockers from the aspect of computational study. J Mol Model 18:4491–4501CrossRefGoogle Scholar
  37. 37.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926CrossRefGoogle Scholar
  38. 38.
    Rossini AJ, Mills RW, Briscoe GA, Norton EL, Geier SJ, Hung I, Zheng S, Autschbach J, Schurko RW (2009) Solid-state chlorine NMR of group IV transition metal organometallic complexes. J Am Chem Soc 131:3317–3330CrossRefGoogle Scholar
  39. 39.
    Autschbach J, Zheng S (2008) Analyzing Pt chemical shifts calculated from relativistic density functional theory using localized orbitals: the role of Pt 5d lone pairs. Magn Reson Chem 46:S45–S55CrossRefGoogle Scholar
  40. 40.
    Autschbach J, Zheng S, Schurko R (2010) Analysis of electric field gradient tensors at quadrupolar nuclei in common structural motifs. Concepts Magn Reson A 36:84–126Google Scholar
  41. 41.
    Xavier RJ, Gobinath E (2012) FT-IR, FT-Raman, ab initio and DFT studies, HOMO–LUMO and NBO analysis of 3-amino-5-mercapto-1,2,4-triazole. Spectrochim Acta A 86:242–251CrossRefGoogle Scholar
  42. 42.
    Irikura KK (1998) Computational thermochemistry: Prediction and estimation of molecular thermodynamics (ACS Symposium Series 677). American Chemical Society, WashingtonCrossRefGoogle Scholar
  43. 43.
    Priyakumar UD, Sastry GN (2001) First ab initio and density functional study on the structure, bowl-to-bowl inversion barrier, and vibrational spectra of the elusive C -symmetric buckybowl: sumanene, C21H12. J Phys Chem A 105:4488–4494CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stevan Armaković
    • 1
  • Sanja J. Armaković
    • 2
  • Jovan P. Šetrajčić
    • 1
    • 4
  • Ljubiša D. Džambas
    • 3
  1. 1.Department of Physics, Faculty of SciencesUniversity of Novi SadNovi SadSerbia
  2. 2.Department of Chemistry, Biochemistry and Environmental Protection, Faculty of SciencesUniversity of Novi SadNovi SadSerbia
  3. 3.Department of Dentistry, Medical FacultyUniversity of Novi SadNovi SadSerbia
  4. 4.Academy of Sciences and Arts of Republic of SrpskaBanja LukaRepublic of Srpska

Personalised recommendations