Advertisement

Journal of Molecular Modeling

, Volume 19, Issue 5, pp 2069–2078 | Cite as

CO2 adsorption on polar surfaces of ZnO

  • Sergio A. S. FariasEmail author
  • E. Longo
  • R. Gargano
  • João B. L. Martins
Original Paper

Abstract

Physical and chemical adsorption of CO2 on ZnO surfaces were studied by means of two different implementations of periodic density functional theory. Adsorption energies were computed and compared to values in the literature. In particular, it was found that the calculated equilibrium structure and internuclear distances are in agreement with previous work. CO2 adsorption was analyzed by inspection of the density of states and electron localization function. Valence bands, band gap and final states of adsorbed CO2 were investigated and the effect of atomic displacements analyzed. The partial density of states (PDOS) of chemical adsorption of CO2 on the ZnO(0001) surface show that the p orbitals of CO2 were mixed with the ZnO valence band state appearing at the top of the valence band and in regions of low-energy conduction band.

Figure

ELF analysis of bidentate and tridentate chemical adsorptions

Keywords

CO2 adsorption Electronic localization function First principles Plane wave ZnO 

Notes

Acknowledgments

The authors acknowledge the careful reading done by the referees. The authors are indebted to the financial support of National Council of Technological and Scientific Development (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and National Institute of Science and Technology of Materials in Nanotechnology (INCTMN).

References

  1. 1.
    Abe K, Banno Y, Sasayama T, Koizumi K (2009) J Vac Sci Technol B 27:1652–1654. doi: 10.1116/1.3089374 CrossRefGoogle Scholar
  2. 2.
    Beltran A, Andres J, Calatayud M, Martins JBL (2001) Theoretical study of ZnO (10(1)over-bar-0) and Cu/ZnO (10(1)over-bar-0) surfaces. Chem Phys Lett 338:224–230. doi: 10.1016/S0009-2614(01)00238-X CrossRefGoogle Scholar
  3. 3.
    Marana NL, Longo VM, Longo E, Martins JBL, Sambrano JR (2008) Electronic and structural properties of the (10(1)over-bar0) and (11(2)over-bar0) ZnO surfaces. J Phys Chem A 112:8958–8963CrossRefGoogle Scholar
  4. 4.
    Tabatabaei J, Sakakini BH, Waugh KC (2006) On the mechanism of methanol synthesis and the water-gas shift reaction on ZnO. Catal Lett 110:77–84CrossRefGoogle Scholar
  5. 5.
    Noguera C (2000) Polar oxide surfaces. J Phys Condens Matter 12:R367–R410CrossRefGoogle Scholar
  6. 6.
    Noei H, Woll C, Mahler M, Wang YM (2011) Activation of carbon dioxide on ZnO nanoparticles studied by vibrational spectroscopy. J Phys Chem C 115:908–914. doi: 10.1021/jp102751t CrossRefGoogle Scholar
  7. 7.
    Martins JBL, Longo E, Salmon ODR, Espinoza VAA, Taft CA (2004) The interaction of H-2, CO, CO2, H2O and NH3 on ZnO surfaces: an Oniom study. Chem Phys Lett 400:481–486CrossRefGoogle Scholar
  8. 8.
    Martins JBL, Longo E, Taft CA (1998) CO2 and NH3 interaction with ZnO surface: An AM1 study. Int J Quantum Chem 70:367–374CrossRefGoogle Scholar
  9. 9.
    Martins JBL, Sambrano JR, Vasconcellos LAS, Longo E, Taft CA (2004) Theoretical analysis of the interaction of CO, CO2, and NH3, with ZnO. Quim Nova 27:10–16CrossRefGoogle Scholar
  10. 10.
    Borodko Y, Somorjai GA (1999) Catalytic hydrogenation of carbon oxides—a 10-year perspective. Appl Catal A Gen 186:355–362CrossRefGoogle Scholar
  11. 11.
    Fink K (2006) Ab initio cluster calculations on the electronic structure of oxygen vacancies at the polar ZnO(0001) surface and on the adsorption of H-2, CO, and CO2 at these sites. Phys Chem Chem Phys 8:1482–1489CrossRefGoogle Scholar
  12. 12.
    Moreira NH, da Rosa AL, Frauenheim T (2009) Covalent functionalization of ZnO surfaces: a density functional tight binding study. Appl Phys Lett 94:193109Google Scholar
  13. 13.
    French SA, Sokol AA, Bromley ST, Catlow CRA, Rogers SC, King F, Sherwood P (2001) From CO2 to methanol by hybrid QM/MM embedding. Angew Chem Int Ed 40:4437–4440. doi: 1433-7851/01/4023-4438 CrossRefGoogle Scholar
  14. 14.
    Chen WK, Zhang YF, Ding KN, Xu YJ, Li Y, Li JQ (2004) A density functional theory study of the adsorption of CO2 on a ZnO(10(1)over-bar0) surface. Chin J Struct Chem 23:337–341Google Scholar
  15. 15.
    Wang Y, Kovacik R, Meyer B, Kotsis K, Stodt D, Staemmler V, Qiu H, Traeger F, Langenberg D, Muhler M, Woll C (2007) CO2 activation by ZnO through the formation of an unusual tridentate surface carbonate. Angew Chem Int Ed 46:5624–5627. doi: 10.1002/anie.200700564 CrossRefGoogle Scholar
  16. 16.
    Kotsis K, Stodt D, Staemmler V, Kovacik R, Meyer B, Traeger F, Langenberg D, Strunskus T, Kunat M, Woll C (2008) CO2 adlayers on the mixed terminated ZnO(10-10) surface studied by he atom scattering, photoelectron spectroscopy and ab initio electronic structure calculations. Z Phys Chem Int J Res Phys Chem Chem Phys 222:891–915Google Scholar
  17. 17.
    Davis R, Walsh JF, Muryn CA, Thornton G, Dhanak VR, Prince KC (1993) The orientation of formate and carbonate on Zno[10(1)over-Bar0]. Surf Sci 298:L196–L202CrossRefGoogle Scholar
  18. 18.
    GutierrezSosa A, Crook S, Haq S, Lindsay R, Ludviksson A, Parker S, Campbell CT, Thornton G (1996) Influence of Cu overlayers on the interaction of CO and CO2 with ZnO(000(1)over-bar)-O. Faraday Discuss 105:355–368CrossRefGoogle Scholar
  19. 19.
    Barteau MA (1993) Site requirements of reactions on oxide surfaces. J Vac Sci Technol A 11:2162–2168CrossRefGoogle Scholar
  20. 20.
    Wang J, Burghaus U (2005) Adsorption of CO on the copper-precovered ZnO(0001) surface: a molecular-beam scattering study. J Chem Phys 123(18):184716Google Scholar
  21. 21.
    Wang J, Burghaus U (2005) Structure-activity relationship: the case of CO2 adsorption on H/Zn-ZnO(0001). Chem Phys Lett 403:42–46CrossRefGoogle Scholar
  22. 22.
    Wang J, Burghaus U (2005) Adsorption dynamics of CO2 on Zn-ZnO(0001): a molecular beam study. J Chem Phys 122:044705Google Scholar
  23. 23.
    Göpel W, Bauer RS, Hansson G (1980) Ultraviolet photoemission studies of chemisorption and point defect formation on ZnO nonpolar surfaces. Surf Sci 99:138–156. doi: 10.1016/0039-6028(80)90584-1 CrossRefGoogle Scholar
  24. 24.
    Hotan W, Göpel W, Haul R (1979) Interaction of CO2 and co with nonpolar zinc oxide surfaces. Surf Sci 83:162–180. doi: 10.1016/0039-6028(79)90486-2 CrossRefGoogle Scholar
  25. 25.
    Gutierrez-Sosa A, Evans TM, Parker SC, Campbell CT, Thornton G (2002) Geometry of C1-3 oxygenates on ZnO(0001)-Zn. Surf Sci 497:239–246. doi: 10.1016/S0039-6028(01)01645-4 CrossRefGoogle Scholar
  26. 26.
    Cheng WH, Kung HH (1982) Interaction of Co, Co2 and O2 with non-polar, stepped and polar Zn surfaces of Zno. Surf Sci 122:21–39CrossRefGoogle Scholar
  27. 27.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:B864–B871CrossRefGoogle Scholar
  28. 28.
    Zhang FY (2011) A possible new transition path for ZnO from B4 to B1. Physica B 406:3942–3946CrossRefGoogle Scholar
  29. 29.
    Ashrafi A, Jagadish C (2007) Review of zincblende ZnO: stability of metastable ZnO phases. J Appl Phys 102:071101CrossRefGoogle Scholar
  30. 30.
    Charifi Z, Baaziz H, Reshak AH (2007) Ab-initio investigation of structural, electronic and optical properties for three phases of ZnO compound. Phys Status Solidi B Basic Solid State Phys 244:3154–3167CrossRefGoogle Scholar
  31. 31.
    Hill NA, Waghmare U (2000) First-principles study of strain-electronic interplay in ZnO: stress and temperature dependence of the piezoelectric constants. Phys Rev B 62:8802–8810CrossRefGoogle Scholar
  32. 32.
    Schroer P, Kruger P, Pollmann J (1993) 1st-principles calculation of the electronic-structure of the wurtzite semiconductors Zno and Zns. Phys Rev B 47:6971–6980CrossRefGoogle Scholar
  33. 33.
    Perdew JP (1991) Electronic structure of solids. Akademie, BerlinGoogle Scholar
  34. 34.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  35. 35.
    Mattsson AE, Armiento R, Schultz PA, Mattsson TR (2006) Nonequivalence of the generalized gradient approximations PBE and PW91. Phys Rev B 73:195123. doi: 10.1103/PhysRevB.73.195123 CrossRefGoogle Scholar
  36. 36.
    Adllan AA, Corso AD (2011) Ultrasoft pseudopotentials and projector augmented-wave data sets: application to diatomic molecules. J Phys Condens Matter 23:425501. doi: 10.1088/0953-8984/23/42/425501 CrossRefGoogle Scholar
  37. 37.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775CrossRefGoogle Scholar
  38. 38.
    Swart M, Snijders JG (2003) Accuracy of geometries: influence of basis set, exchange–correlation potential, inclusion of core electrons, and relativistic corrections. Theor Chem Accounts 110:34–41. doi: 10.1007/s00214-003-0443-5 CrossRefGoogle Scholar
  39. 39.
    Orita H, Itoh N, Inada Y (2004) All electron scalar relativistic calculations on adsorption of CO on Pt(1 1 1) with full-geometry optimization: a correct estimation for CO site-preference. Chem Phys Lett 384:271–276. doi: 10.1016/j.cplett.2003.12.034 CrossRefGoogle Scholar
  40. 40.
    Kresse G, Furthmuller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50CrossRefGoogle Scholar
  41. 41.
    Abrahams SC, Bernstein JL (1969) Remeasurement of the structure of hexagonal ZnO. Acta Cryst B 25:1233–1236. doi: 10.1107/S0567740869003876 CrossRefGoogle Scholar
  42. 42.
    Shein IR, Kiiko VS, Makurin YN, Gorbunova MA, Ivanovskii AL (2007) Elastic parameters of single-crystal and polycrystalline wurtzite-like oxides BeO and ZnO: Ab initio calculations. Phys Solid State 49:1067–1073CrossRefGoogle Scholar
  43. 43.
    Kohout M (2011) DGRID, version 4.6. RadebeulGoogle Scholar
  44. 44.
    Sawada H, Wang R, Sleight AW (1996) An electron density residual study of zinc oxide. J Solid State Chem 122:148–150CrossRefGoogle Scholar
  45. 45.
    Woll C (2007) The chemistry and physics of zinc oxide surfaces. Prog Surf Sci 82:55–120CrossRefGoogle Scholar
  46. 46.
    Dulub O, Diebold U, Kresse G (2003) Novel stabilization mechanism on polar surfaces: ZnO(0001)-Zn. Phys Rev Lett 90:016102CrossRefGoogle Scholar
  47. 47.
    Wander A, Schedin F, Steadman P, Norris A, McGrath R, Turner TS, Thornton G, Harrison NM (2001) Stability of polar oxide surfaces. Phys Rev Lett 86:3811–3814CrossRefGoogle Scholar
  48. 48.
    Wander A, Harrison NM (2001) The stability of polar oxide surfaces: the interaction of H2O with ZnO(0001) and ZnO(000math). J Chem Phys 115:2312–2316. doi: 10.1063/1.1384030 CrossRefGoogle Scholar
  49. 49.
    Meyer B (2004) First-principles study of the polar O-terminated ZnO surface in thermodynamic equilibrium with oxygen and hydrogen. Phys Rev B 69:045416CrossRefGoogle Scholar
  50. 50.
    Jedrecy N, Sauvage-Simkin M, Pinchaux R (2000) The hexagonal polar ZnO(0001)-(1 x 1) surfaces: structural features as stemming from X-ray diffraction. Appl Surf Sci 162:69–73CrossRefGoogle Scholar
  51. 51.
    King ST, Parihar SS, Pradhan K, Johnson-Steigelman HT, Lyman PF (2008) Observation of a (root 3 x root 3)R30 degrees reconstruction on O-polar ZnO surfaces. Surf Sci 602:L131–L134CrossRefGoogle Scholar
  52. 52.
    Valtiner M, Torrelles X, Pareek A, Borodin S, Gies H, Grundmeier G (2010) In situ study of the polar ZnO(0001)-Zn surface in alkaline electrolytes. J Phys Chem C 114:15440–15447CrossRefGoogle Scholar
  53. 53.
    Carlsson JM (2001) Electronic structure of the polar ZnO{0001}-surfaces. Comput Mater Sci 22:24–31CrossRefGoogle Scholar
  54. 54.
    Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38CrossRefGoogle Scholar
  55. 55.
    Xu PS, Sun YM, Shi CS, Xu FQ, Pan HB (2003) The electronic structure and spectral properties of ZnO and its defects. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 199:286–290CrossRefGoogle Scholar
  56. 56.
    Kaxiras E (2003) Atomic and electronic structure of solids. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  57. 57.
    Au CT, Hirsch W, Hirschwald W (1988) Adsorption of carbon-monoxide and carbon-dioxide on annealed and defect zinc-oxide (0001) surfaces studied by photoelectron-spectroscopy (Xps and Ups). Surf Sci 197:391–401CrossRefGoogle Scholar
  58. 58.
    Chuasiripattana K, Warschkow O, Delley B, Stampfl C (2010) Reaction intermediates of methanol synthesis and the water-gas-shift reaction on the ZnO(0001) surface. Surf Sci 604:1742–1751CrossRefGoogle Scholar
  59. 59.
    Lindsay R, Gutierrez-Sosa A, Thornton G, Ludviksson A, Parker S, Campbell CT (1999) NEXAFS study of CO adsorption on ZnO(000(1)over-bar1)-O and ZnO (000(1)over-bar)-O/Cu. Surf Sci 439:131–138CrossRefGoogle Scholar
  60. 60.
    Kossmann J, Rossmuller G, Hattig C (2012) Prediction of vibrational frequencies of possible intermediates and side products of the methanol synthesis on ZnO(000(1)over-bar) by ab initio calculations. J Chem Phys 136:034706. doi: 10.1063/1.3671450 CrossRefGoogle Scholar
  61. 61.
    Bowker M, Houghton H, Waugh KC (1981) Mechanism and kinetics of methanol synthesis on zinc oxide. J Chem Soc, Faraday Trans 1(77):3023–3036. doi: 10.1039/F19817703023 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sergio A. S. Farias
    • 1
    Email author
  • E. Longo
    • 2
  • R. Gargano
    • 3
  • João B. L. Martins
    • 1
  1. 1.Laboratório de Química Computacional, IQUnBBrasíliaBrazil
  2. 2.INCTMN, Departamento de Físico Química, Instituto de QuímicaUnespAraraquaraBrazil
  3. 3.Instituto de FísicaUnBBrasíliaBrazil

Personalised recommendations