Advertisement

Journal of Molecular Modeling

, Volume 19, Issue 5, pp 2035–2041 | Cite as

Nature of halogen bonding. A study based on the topological analysis of the Laplacian of the electron charge density and an energy decomposition analysis

  • Darío J. R. Duarte
  • Gladis L. Sosa
  • Nélida M. PeruchenaEmail author
Original Paper

Abstract

In this work we investigate the nature of the Cl···N interactions in complexes formed between substituted ammonium [NHn(X3-n) (with n = 0, 1, 2, 3 and X = −CH3, −F] as Lewis bases and F−Cl molecule as Lewis acid. They have been chosen as a study case due to the wide range of variation of their binding energies, BEs. Møller-Plesset [MP2/6-311++G(2d,2p)] calculations show that the BEs for this set of complexes lie in the range from 1.27 kcal/mol (in F−Cl···NF3) to 27.62 kcal/mol [in F−Cl···N(CH3)3]. The intermolecular distribution of the electronic charge density and their L(r) = −¼∇2ρ(r) function have been investigated within the framework of the atoms in molecules (AIM) theory. The intermolecular interaction energy decomposition has also been analyzed using the reduced variational space (RVS) method. The topological analysis of the L(r) function reveals that the local topological properties measured at the (3,+1) critical point [in L(r) topology] are good descriptors of the strength of the halogen bonding interactions. The results obtained from energy decomposition analysis indicate that electrostatic interactions play a key role in these halogen bonding interactions. These results allow us to establish that, when the halogen atom is bonded to a group with high electron-withdrawing capacity, the electrostatic interaction between the electron cloud of the Lewis base and the halogen atom unprotected nucleus of the Lewis acid produces the formation and determines the geometry of the halogen bonded complexes. In addition, a good linear relationship has been established between: the natural logarithm of the BEs and the electrostatic interaction energy between electron charge distribution of N atom and nucleus of Cl atom, denoted as V e-n(N,Cl) within the AIM theory.

Figure

Interaction energy components for FCl···NH3 complex in function of the chlorinenitrogen separation distance.

Keywords

AIM Charge density Halogen bond Laplacian σ-hole 

Notes

Acknowledgments

The authors acknowledge SECYT-UNNE (Secretaría de Ciencia y Tecnología – Universidad Nacional del Nordeste), Grant PICTO (Proyecto de Investigación Científica y Tecnológica Orientado) 089 and PIP CONICET (Proyecto de Investigación Plurianual–Consejo Nacional de Investigaciones Científicas y Técnicas) 095, for financial support. Darío Jorge Roberto Duarte is fellows of CONICET UNNE and Nélida Maria Peruhena is a career researcher of CONICET, Argentine.

Supplementary material

894_2012_1624_MOESM1_ESM.doc (137 kb)
ESM 1 (DOC 137 kb)

Reference

  1. 1.
    Brinck T, Murray JS, Politzer P (1992) Int J Quantum Chem, Quantum Biol Symp 19:57–64CrossRefGoogle Scholar
  2. 2.
    Auffinger P, Hays FA, Westhof E, Ho PS (2004) Proc Natl Acad Sci USA 101:16789–16794CrossRefGoogle Scholar
  3. 3.
    Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) J Mol Model 13:305–311CrossRefGoogle Scholar
  4. 4.
    Politzer P, Murray JS, Concha MC (2007) J Mol Model 13:643–650CrossRefGoogle Scholar
  5. 5.
    Tomura M (2009) Chem Phys 359:126–131CrossRefGoogle Scholar
  6. 6.
    Stevens WJ, Fink WH (1987) Chem Phys Lett 139:15–22CrossRefGoogle Scholar
  7. 7.
    Riley KE, Hobza P (2008) J Chem Theory Comput 4:232–242CrossRefGoogle Scholar
  8. 8.
    Jeziorski B, Moszynski R, Szalewicz K (1994) Chem Rev 94:1887–1930CrossRefGoogle Scholar
  9. 9.
    Alkorta I, Blanco F, Elguero J (2009) Struct Chem 20:63–71CrossRefGoogle Scholar
  10. 10.
    Glendening ED (2005) J Phys Chem A 109:11936CrossRefGoogle Scholar
  11. 11.
    Li Q, Yuan H, Jing B, Liu Z, Li W, Cheng J, Gong B, Sun J (2010) THEOCHEM 942:145–148CrossRefGoogle Scholar
  12. 12.
    Bader RFW (1990) Atoms in molecules. A quantum theory. Clarendon, OxfordGoogle Scholar
  13. 13.
    Popelier P (2000) Atoms in molecules, an introduction. Prentice-Hall, ManchesterGoogle Scholar
  14. 14.
    Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  15. 15.
    Lu Y-X, Zou J-W, Wand Y-H, Yu Q-S, Jiang Y-J, Zhao W-N (2007) Chem Phys Lett 449:6–10CrossRefGoogle Scholar
  16. 16.
    Eskandari K, Zariny H (2010) Chem Phys Lett 492:9–13CrossRefGoogle Scholar
  17. 17.
    Lu Y-X, Zou J-W, Wand Y-H, Yu Q-S (2006) THEOCHEM 767:139–142CrossRefGoogle Scholar
  18. 18.
    Lu Y-X, Zou J-W, Wand Y-H, Yu Q-SJ (2006) THEOCHEM 776:83–87CrossRefGoogle Scholar
  19. 19.
    Blanco F, Alcorta I, Solimannejad M, Elguero J (2009) J Phys Chem A 113:3237–3244CrossRefGoogle Scholar
  20. 20.
    Xu L, Zou J-W, Lu Y-L, Yu Q-S, Zhang N (2009) THEOCHEM 897:12–16CrossRefGoogle Scholar
  21. 21.
    Xu L, Zou J-W, Wang Y-H, Yu Q-S (2007) Int J Quant Chem 107:1479–1486CrossRefGoogle Scholar
  22. 22.
    Lu Y-X, Zou J-W, Wang Y-H, Yu Q-S (2007) Chem Phys 334:1–7CrossRefGoogle Scholar
  23. 23.
    Zhang X, Zeng Y, Li X, Meng L, Zheng S (2011) Struct Chem 22:567–576CrossRefGoogle Scholar
  24. 24.
    Duarte DJR, Vallejos MM, Peruchena NM (2010) J Mol Model 16:737–748CrossRefGoogle Scholar
  25. 25.
    Boys SF, Bernardi F (1970) Mol Phys 19:553–559CrossRefGoogle Scholar
  26. 26.
    Su P, Li H (2009) J Chem Phys 131:014102–014102CrossRefGoogle Scholar
  27. 27.
    Blieger-König F, Schönbohn J (2000) AIM2000 Program package, version 2.0 Copyright 2002, chemical adviser by Bader RFW. Büro fur Innovative Software Strieibel Blieger-König, GermanyGoogle Scholar
  28. 28.
    AIMAll (Version 11.12.19), Todd A. Keith, TK Gristmill Software, Overland Park KS, USA, 2011 (aim.tkgristmill.com)Google Scholar
  29. 29.
    Frisch MJ et al. (2003) Gaussian 03, Revision E.01. Gaussian Inc, WallingfordGoogle Scholar
  30. 30.
    Bondi A (1964) J Phys Chem 68:441–451CrossRefGoogle Scholar
  31. 31.
    Bui TTT, Dahaoui S, Lecomte C, Desiraju GR, Espinosa E (2009) Angew Chem Int Ed 48:3838–3841CrossRefGoogle Scholar
  32. 32.
    Martinez Amezaga NJ, Pamies SC, Peruchena NM, Sosa GL (2010) J Phys Chem A 114:552–562CrossRefGoogle Scholar
  33. 33.
    Bader RFW, Essén H (1984) J Chem Phys 80:1943–1960CrossRefGoogle Scholar
  34. 34.
    Rozas I, Alkorta I, Elguero J (2000) J Am Chem Soc 122:11154–11161CrossRefGoogle Scholar
  35. 35.
    Popelier PLA (2000) Coord Chem Rev 197:169–189CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Darío J. R. Duarte
    • 1
  • Gladis L. Sosa
    • 2
  • Nélida M. Peruchena
    • 1
    Email author
  1. 1.Laboratorio de Estructura Molecular y Propiedades, Área de Química Física, Departamento de Química, Facultad de Ciencias Exactas y Naturales y AgrimensuraUniversidad Nacional del NordesteCorrientesArgentina
  2. 2.Facultad Regional ResistenciaUniversidad Tecnológica NacionalResistenciaArgentina

Personalised recommendations