Journal of Molecular Modeling

, Volume 19, Issue 5, pp 2027–2033 | Cite as

Transition energy and potential energy curves for ionized inner-shell states of CO, O2 and N2 calculated by several inner-shell multiconfigurational approaches

  • Carlos E. V. de Moura
  • Ricardo R. Oliveira
  • Alexandre B. RochaEmail author
Original Paper


Potential energy curves and inner-shell ionization energies of carbon monoxide, oxygen and nitrogen molecules were calculated using several forms of the inner-shell multiconfigurational self-consistent field (IS-MCSCF) method—a recently proposed protocol to obtain specifically converged inner-shell states at this level. The particular forms of the IS-MCSCF method designated IS-GVB-PP, IS-FVBL and IS-CASSCF stand for perfect pairing generalized valence bond, full valence bond-like MCSCF and complete active space self consistent field, respectively. A comparison of these different versions of the IS-MCSCF method was carried out for the first time. The results indicate that inner-shell states are described accurately even for the simplest version of the method (IS-GVB-PP). Dynamic correlation was recovered by multireference configuration interaction or multireference perturbation theory. For molecules not having equivalent atoms, all methods led to comparable and accurate transition energies. For molecules with equivalent atoms, the most accurate results were obtained by multireference perturbation theory. Scalar relativistic effects were accounted for using the Douglas-Kroll-Hess Hamiltonian.


Inner-shell state Multiconfigurational approach IS-MCSCF VB function 



The authors would like to acknowledge Conselho Nacional de Pesquisa (CNPq) and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) for partial financial support. We thank Dr. A.G.H. Barbosa for fruitful comments.


  1. 1.
    Hsu H-L, Davidson ER, Pitzer RM (1976) J Chem Phys 65:609CrossRefGoogle Scholar
  2. 2.
    Rossi AR, Davidson ER (1992) J Phys Chem 96:10682CrossRefGoogle Scholar
  3. 3.
    Naves de Brito A, Correia N, Svensson S, Ågren H (1991) J Chem Phys 95:2965CrossRefGoogle Scholar
  4. 4.
    Gilbert ATB, Besley NA, Gill PMW (2008) J Phys Chem A: 112:13164CrossRefGoogle Scholar
  5. 5.
    Besley NA, Gilbert ATB, Gill PMW (2009) J Chem Phys 130:124308CrossRefGoogle Scholar
  6. 6.
    Asmuruf FA, Besley NA (2008) Chem Phys Lett 463:267CrossRefGoogle Scholar
  7. 7.
    Rocha AB, Bielschowsky CE (1999) Chem Phys 243:9CrossRefGoogle Scholar
  8. 8.
    Eustatiu IG, Tyliszczak T, Hitchcock AP, Turci CC, Rocha AB, Bielschowsky CE (2000) Phys Rev A 61:042505CrossRefGoogle Scholar
  9. 9.
    Rocha AB, Bielschowsky CE (2000) J Chem Phys 113:7971CrossRefGoogle Scholar
  10. 10.
    Barbatti M, Rocha AB, Bielschowsky CE (2004) Chem Phys 299:83CrossRefGoogle Scholar
  11. 11.
    Francis JT, Kosugi N, Hitchcock AP (1994) J Chem Phys 101:10429CrossRefGoogle Scholar
  12. 12.
    Besley NA, Peach MJG, Tozerb DJ (2009) Phys Chem Chem Phys 11:10350CrossRefGoogle Scholar
  13. 13.
    Rocha AB (2011) J Chem Phys 134:024107CrossRefGoogle Scholar
  14. 14.
    Agren H, Bagus PS, Roos BO (1981) Chem Phys Lett 82:505CrossRefGoogle Scholar
  15. 15.
    Shirai S, Yamamoto S, Hyodo S (2004) J Chem Phys 121:7586CrossRefGoogle Scholar
  16. 16.
    Jensen HJA, Jørgensen P, Agren H (1987) J Chem Phys 87:451CrossRefGoogle Scholar
  17. 17.
    Bagus PS, Schaefer HF (1972) J Chem Phys 56:224CrossRefGoogle Scholar
  18. 18.
    Hollauer E, Nascimento MAC (1991) Chem Phys Lett 184:470CrossRefGoogle Scholar
  19. 19.
    Hollauer E, Nascimento MAC (1993) J Chem Phys 99:1207CrossRefGoogle Scholar
  20. 20.
    Bielschowsky CE, Nascimento MAC, Hollauer E (1992) Phys Rev A 45:7942CrossRefGoogle Scholar
  21. 21.
    Rocha AB, de Moura CEV (2011) J Chem Phys 135:224112CrossRefGoogle Scholar
  22. 22.
    Nascimento MAC (1997) Mol Eng 7:87CrossRefGoogle Scholar
  23. 23.
    de Miranda MP, Bielschowsky CE (1993) J Mol Struct (Theochem) 282:71CrossRefGoogle Scholar
  24. 24.
    de Miranda MP, Bielschowsky CE, Roberty HM, de Souza GGB (1994) Phys Rev A 49:2399CrossRefGoogle Scholar
  25. 25.
    Tyliszczak T, Eustatiu IG, Hitchcock AP, Turci CC, Rocha AB, Bielschowsky CE (2001) J Electron Spectrosc Rel Phen 114–116:93CrossRefGoogle Scholar
  26. 26.
    Barbatti M, Rocha AB, Bielschowsky CE (2005) Phys Rev A 72:032711CrossRefGoogle Scholar
  27. 27.
    Goddard WA III, Dunning TH, Hunt JW, Hay JP (1973) Acc Chem Res 6:368CrossRefGoogle Scholar
  28. 28.
    Gerratt J, Lipscomb WN (1968) Proc Natl Acad Sci USA 59:332CrossRefGoogle Scholar
  29. 29.
    Douglas M, Kroll NM (1974) Ann Phys 82:89CrossRefGoogle Scholar
  30. 30.
    Hess BA (1986) Phys Rev A 33:3742CrossRefGoogle Scholar
  31. 31.
    Nakajima T, Hirao K (2000) J Chem Phys 113:7786CrossRefGoogle Scholar
  32. 32.
    Medhurst LJ, Heimann PA, Siggel MRF, Shirley DA, Chen CT, Ma Y, Modesti S, Sette F (1992) Chem Phys Lett 193:493CrossRefGoogle Scholar
  33. 33.
    Hergenhahn U (2004) J Phys B: At Mol Opt Phys 37:R89CrossRefGoogle Scholar
  34. 34.
    Butscher W, Buenker RJ, Peyerimhoff SD (1977) Chem Phys Lett 52:449CrossRefGoogle Scholar
  35. 35.
    Johansson G, Hedman J, Berndtsson A, Klasson A, Nilsson R (1973) J Electron Spectrosc Rel Phenom 2:295CrossRefGoogle Scholar
  36. 36.
    Nakano H, Uchiyama R, Hirao K (2002) J Comput Chem 23:1166CrossRefGoogle Scholar
  37. 37.
    van Lenthe JH, Balint-Kurti GG (1980) Chem Phys Lett 76:138CrossRefGoogle Scholar
  38. 38.
    Dunning TH Jr (1989) J Chem Phys 90:1007CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Carlos E. V. de Moura
    • 1
  • Ricardo R. Oliveira
    • 1
  • Alexandre B. Rocha
    • 1
    Email author
  1. 1.Instituto de Química, Departamento de Físico-QuímicaUniversidade Federal do Rio de Janeiro, Cidade UniversitáriaRio de JaneiroBrazil

Personalised recommendations