Skip to main content

Nucleus-independent chemical shift criterion for aromaticity in π-extended tetraoxa[8]circulenes

Abstract

Recently synthesized π-extended symmetrical tetraoxa[8]circulenes that exhibit electroluminescent properties were calculated at the density functional theory (DFT) level using the quantum theory of atoms in molecules (QTAIM) approach to electron density distribution analysis. Nucleus-independent chemical shift (NICS) indices were used to characterize the aromaticity of the studied molecules. The tetraoxa[8]circulene molecules were found to consist of two antiaromatic perimeters (according to the Hückel “4n” antiaromaticity rule) that include 8 and 24 π-electrons. Conversely, NICS calculations demonstrated the existence of a common π-extended system (distributed like a flat ribbon) in the studied tetraoxa[8]circulene molecules. Thus, these symmetrical tetraoxa[8]circulene molecules provide examples of diatropic systems characterized by the presence of induced diatropic ring currents.

Special aromaticity of the tetraoxa[8]circulenes

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Eskildsen J, Reenberg T, Christensen JB (2000) Substituted tetraoxa[8]circulenes—new members of the liquid crystal family. Eur J Org Chem 2000:1637–1640

  2. Nielsen CB, Brock-Nannestad T, Reenberg TK, Hammershøj P, Christensen JB, Stouwdam JW, Pittelkow M (2010) Organic light-emitting diodes from symmetrical and unsymmetrical π-extended tetraoxa[8]circulene. Chem Eur J 16:13030–13034

    Article  CAS  Google Scholar 

  3. Brock-Nannestad T, Nielsen CB, Schau-Magnussen M, Hammershøj P, Reenberg TK, Petersen AB, Trpcevski D, Pittelkow M (2011) Tetra-tert-butyltetraoxa[8]circulene and its unusual aggregation behaviour. Eur J Org Chem 2011:6320–6325

  4. Eskildsen J, Hammershøj P, Reenberg TK, Larsen U, Pittelkow M, Leth SM, Peck RA, Christensen JB (2007) Substituted tetraoxa[8]circulenes. Asian Chem Lett 11:211–218

    Google Scholar 

  5. Rathore R, Abdelwahed SH (2004) Soluble cycloannulated tetroxa[8]circulane derivatives: synthesis, optical and electrochemical properties, and generation of their robust cation–radical salts. Tetrahedron Lett 45:5267–5270

    Article  CAS  Google Scholar 

  6. Yu K, Sumerin VV, Shpanchenko RV, Balenkova ES, Nenajdenko VG (2006) “Sulflower”: a new form of carbon sulfide. Angew Chem Int Ed 118:7527–7530

    Google Scholar 

  7. Yu CK, Balenkova ES, Nenajdenko VG (2008) From thiophene to sulflower. Mendeleev Commun 18:171–179

    Article  Google Scholar 

  8. Salcedo R, Sansores LE, Picazo A, Sansón L (2004) [8]Circulene. Theoretical approach. J Mol Struct (THEOCHEM) 678:211–215

    Article  CAS  Google Scholar 

  9. Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PvR (2005) Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem Rev 105:3842–3888

    Article  CAS  Google Scholar 

  10. Schleyer PvR, Maerker C, Dransfeld A, Jiao H, Hommes NJRvE (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318

    Article  CAS  Google Scholar 

  11. Schleyer PvR, Manoharan M, Wang Z-X, Kiran B, Jiao H, Puchta R, Hommes NJRvE (2001) Dissected nucleus-independent chemical shift analysis of π-aromaticity and antiaromaticity. Org Lett 3:2465–2468

    Article  CAS  Google Scholar 

  12. Fallah-Bagher-Shaidaei H, Wannere CS, Corminboeuf C, Puchta R, Schleyer PvR (2006) Which NICS aromaticity index for planar π rings is best? Org Lett 8:863–866

    Article  CAS  Google Scholar 

  13. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  14. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Google Scholar 

  15. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  16. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Montgomery J, Vreven J, Kudin K, Burant J, Millam J, Iyengar S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox RJ, Hratchian H, Cross J, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R, Yazyev O, Austin A, Cammi R, Pomelli C, Ochterski J, Ayala P, Morokuma K, Voth G, Salvador P, Dannenberg J, Zakrzewski V, Dapprich S, Daniels A, Strain M, Farkas O, Malick D, Rabuck A, Raghavachari K, Foresman J, Ortiz J, Cui Q, Baboul A, Clifford S, Cioslowski J, Stefanov B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R, Fox D, Keith T, Al-Laham M, Peng C, Nanayakkara A, Challacombe M, Gill P, Johnson B, Chen W, Wong M, Gonzalez C, Pople J (2004) Gaussian 03, revision C.02. Gaussian, Inc., Wallingford

  17. London F (1937) Théorie quantique des courants interatomiques dans les combinaisons aromatiques. J Phys Radium 8:397–409

    Article  CAS  Google Scholar 

  18. Cheeseman JR, Trucks GW, Keith TA, Frisch MJ (1996) A comparison of models for calculating nuclear magnetic resonance shielding tensors. J Chem Phys 104:5497–5509

    Article  CAS  Google Scholar 

  19. McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J Chem Phys 72:5639–5648

    Google Scholar 

  20. Schleyer PvR, Jiao H, Hommes NJRvE, Malkin VG, Malkina OL (1997) An evaluation of the aromaticity of inorganic rings: refined evidence from magnetic properties. J Am Chem Soc 119:12669–12670

    Article  CAS  Google Scholar 

  21. Foroutan-Nejad C, Shahbazian S, Feixas F, Rashidi-Ranjbar P, Solà MAA (2011) Dissected ring current model for assessing magnetic aromaticity: a general approach for both organic and inorganic rings. J Comput Chem 32:2422–2431

    Article  CAS  Google Scholar 

  22. Bader RFW (1990) Atoms in molecules. A quantum theory. Clarendon, Oxford

    Google Scholar 

  23. Keith TA (2010) AIMAll, version 10.07.25. http://www.aim.tkgristmill.com

  24. Bukalov SS, Leites LA, Lyssenko KA, Aysin RR, Korlyukov AA, Zubavichus JV, Chernichenko KY, Balenkova ES, Nenajdenko VG, Antipin MY (2008) Two modifications formed by “sulflower” C16S8 molecules, their study by XRD and optical spectroscopy (Raman, IR, UV-Vis) methods. J Phys Chem A 112:10949–10961

    Google Scholar 

  25. Gahungu G, Zhang J (2008) Shedding light on octathio[8]circulene and some of its plate-like derivatives. Phys Chem Chem Phys 10:1743–1747

    Article  CAS  Google Scholar 

  26. Gribanova TN, Zefirov NS, Minkin VI (2009) Quantum-chemical study of heteroanalogues of [8]circulenes and their derivatives. Dokl Chem 426:105–110

    Article  CAS  Google Scholar 

  27. Gribanova TN, Zefirov NS, Minkin VI (2010) Structure and stability of the heteroannulated [8–10]circulenes: a quantum-chemical study. Pure Appl Chem 82:1011–1024

    Article  CAS  Google Scholar 

  28. Napolion B, Hagelberg F, Huang M-J, Watts JD, Simeon TM, Vereen D, Walters WL, Williams QL (2011) Theoretical investigation into the structural, thermochemical, and electronic properties of the decathio[10]circulene. J Phys Chem A 115:8682–8690

    Article  CAS  Google Scholar 

  29. Andjelković L, Perić M, Zlatar M, Grubišić S, Gruden-Pavlović M (2012) Magnetic criteria of aromaticity in a benzene cation and anion: how does the Jahn–Teller effect influence the aromaticity? Tetrahedron Lett 53:794–799

    Article  Google Scholar 

  30. Minaev BF, Baryshnikov GV, Minaeva VA (2011) Density functional theory study of electronic structure and spectra of tetraoxa[8]circulenes. Comp Theor Chem 972:68–74

    Article  CAS  Google Scholar 

  31. Minaeva VA, Minaev BF, Baryshnikov GV, Agren H, Pittelkow M (2012) Experimental and theoretical study of IR and Raman spectra of tetraoxa[8]circulenes. Vib Spectrosc 61:156–166

    Article  CAS  Google Scholar 

  32. Radenković S, Gutman I, Bultinck P (2012) A comparative study of aromaticity in tetraoxa[8]circulenes. J Phys Chem A 116:9421–9430. doi:10.1021/jp307281y

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gleb V. Baryshnikov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baryshnikov, G.V., Minaev, B.F., Pittelkow, M. et al. Nucleus-independent chemical shift criterion for aromaticity in π-extended tetraoxa[8]circulenes. J Mol Model 19, 847–850 (2013). https://doi.org/10.1007/s00894-012-1617-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1617-7

Keywords

  • Tetraoxa[8]circulenes
  • Aromaticity
  • Antiaromaticity
  • Hückel rule
  • NICS indices
  • Cyclooctatetraene ring