Advertisement

Journal of Molecular Modeling

, Volume 19, Issue 5, pp 2043–2048 | Cite as

Ab-initio study of anisotropic and chemical surface modifications of β-SiC nanowires

  • Alejandro Trejo
  • José Luis Cuevas
  • Fernando Salazar
  • Eliel Carvajal
  • Miguel Cruz-IrissonEmail author
Original Paper

Abstract

The electronic band structure and electronic density of states of cubic SiC nanowires (SiCNWs) in the directions [001], [111], and [112] were studied by means of Density Functional Theory (DFT) based on the generalized gradient approximation and the supercell technique. The surface dangling bonds were passivated using hydrogen (H) atoms and OH radicals in order to study the effects of this passivation on the electronic states of the SiCNWs. The calculations show a clear dependence of the electronic properties of the SiCNWs on the quantum confinement, orientation, and chemical passivation of the surface. In general, surface passivation with either H or OH radicals removes the dangling bond states from the band gap, and OH saturation appears to produce a smaller band gap than H passivation. An analysis of the atom-resolved density of states showed that there is substantial charge transfer between the Si and O atoms in the OH-terminated case, which reduces the band gap compared to the H-terminated case, in which charge transfer mainly occurs between the Si and C atoms.

Keywords

Nanowires Silicon carbide DFT Surface passivation 

Notes

Acknowledgments

This work was supported by project PICSO12-085 from Instituto de Ciencia y Tecnología del Distrito Federal (ICyTDF), and multidisciplinary project IPN2012-1439 from Instituto Politécnico Nacional. The authors Alejandro Trejo and José Luis Cuevas would like to thank CONACYT for their student scholarships.

References

  1. 1.
    Rostislav AA (2009) Nano-sized silicon carbide: synthesis, structure and properties. Russ Chem Rev 78(9):821–831. doi: 10.1070/RC2009v078n09ABEH004060 CrossRefGoogle Scholar
  2. 2.
    Kim K-S, Chung G-S (2012) Fabrication and characterization of surface type Schottky diode hydrogen sensor using polyaniline/porous 3C-SiC. Synth Met 162(7–8):636–640. doi: 10.1016/j.synthmet.2012.02.007 CrossRefGoogle Scholar
  3. 3.
    Jia YB, Zhuang GL, Wang JG (2012) Electric field induced silicon carbide nanotubes: a promising gas sensor for detecting SO2. J Phys D Appl Phys 45(6):065305. doi: 10.1088/0022-3727/45/6/065305 Google Scholar
  4. 4.
    Tian Y, Zheng HW, Liu XY, Li SJ, Zhang YJ, Hu JF, Lv ZC, Liu YF, Gu YZ, Zhang WF (2012) Microstructure and magnetic properties of Mn-doped 3C-SiC nanowires. Mater Lett 76:219–221. doi: 10.1016/j.matlet.2012.02.109 CrossRefGoogle Scholar
  5. 5.
    Liu H, She G, Mu L, Shi W (2012) Porous SiC nanowire arrays as stable photocatalyst for water splitting under UV irradiation. Mater Res Bull 47(3):917–920. doi: 10.1016/j.materresbull.2011.12.046 CrossRefGoogle Scholar
  6. 6.
    Wang HY, Wang YQ, Hu QF, Li XJ (2012) Capacitive humidity sensing properties of SiC nanowires grown on silicon nanoporous pillar array. Sensors Actuators B Chem 166–167:451–456. doi: 10.1016/j.snb.2012.02.087 CrossRefGoogle Scholar
  7. 7.
    Feng XL, Matheny MH, Zorman CA, Mehregany M, Roukes ML (2010) Low voltage nanoelectromechanical switches based on silicon carbide nanowires. Nano Lett 10(8):2891–2896. doi: 10.1021/nl1009734 CrossRefGoogle Scholar
  8. 8.
    Chiu S-C, Lin W-H, Wu H-C, Youh M-J, Tseng C-L, Chang T-H, Li Y-Y (2012) Silicon carbide nanowire as nanoemitter and greenish-blue nanophosphor for field emission applications. Nanosci Nanotechnol Lett 4(1):72–76. doi: 10.1166/nnl.2012.1284 CrossRefGoogle Scholar
  9. 9.
    Wu R, Zhou K, Wei J, Huang Y, Su F, Chen J, Wang L (2012) Growth of tapered SiC nanowires on flexible carbon fabric: towards field emission applications. J Phys Chem C. doi: 10.1021/jp3028935
  10. 10.
    Catellani A, Calzolari A (2012) Functionalization of SiC(110) surfaces via porphyrin adsorption: ab initio results. J Phys Chem C 116(1):886–892. doi: 10.1021/jp209072n CrossRefGoogle Scholar
  11. 11.
    Choi YY, Kim JG, Park SJ, Choi DJ (2012) Influence of oxygen on the microstructural growth of SiC nanowires. Chem Phys Lett 531:138–142. doi: 10.1016/j.cplett.2012.02.009 CrossRefGoogle Scholar
  12. 12.
    Longkullabutra H, Nhuapeng W, Thamjaree W (2012) Large-scale: synthesis, microstructure, and FT-IR property of SiC nanowires. Curr Appl Phys. doi: 10.1016/j.cap.2012.02.032
  13. 13.
    Wu R, Zha B, Wang L, Zhou K, Pan Y (2012) Core-shell SiC/SiO2 heterostructures in nanowires. Phys Status Solidi A 209(3):553–558. doi: 10.1002/pssa.201127459 Google Scholar
  14. 14.
    Niu JJ, Wang JN (2009) A novel self-cleaning coating with silicon carbide nanowires. J Phys Chem B 113(9):2909–2912. doi: 10.1021/jp808322e CrossRefGoogle Scholar
  15. 15.
    Niu JJ, Wang JN (2007) A simple route to synthesize scales of aligned single-crystalline SiC nanowires arrays with very small diameter and optical properties. J Phys Chem B 111(17):4368–4373. doi: 10.1021/jp070682d CrossRefGoogle Scholar
  16. 16.
    Wu XL, Xiong SJ, Zhu J, Wang J, Shen JC, Chu PK (2009) Identification of surface structures on 3C-SiC nanocrystals with hydrogen and hydroxyl bonding by photoluminescence. Nano Lett 9(12):4053–4060. doi: 10.1021/nl902226u CrossRefGoogle Scholar
  17. 17.
    Rurali R (2005) Electronic and structural properties of silicon carbide nanowires. Phys Rev B 71(20):205405. doi: 10.1103/PhysRevB.71.205405 CrossRefGoogle Scholar
  18. 18.
    Agrawal BK, Pathak A, Agrawal S (2009) An ab-initio study of metallic and semiconducting [001] SiC nanowires. J Phys Soc Jpn 78(3):034721. doi: 10.1143/jpsj.78.034721 Google Scholar
  19. 19.
    Wang Z, Zhao M, He T, Zhang H, Zhang X, Xi Z, Yan S, Liu X, Xia Y (2009) Orientation-dependent stability and quantum-confinement effects of silicon carbide nanowires. J Phys Chem C 113(29):12731–12735. doi: 10.1021/jp903736v CrossRefGoogle Scholar
  20. 20.
    Mirzaei M, Mirzaei M (2010) A computational study of atomic oxygen-doped silicon carbide nanotubes. J Mol Model 17(3):527–531. doi: 10.1007/s00894-010-0751-3 CrossRefGoogle Scholar
  21. 21.
    Saha S, Sarkar P (2012) Tuning the HOMO–LUMO gap of SiC quantum dots by surface functionalization. Chem Phys Lett 536:118–122. doi: 10.1016/j.cplett.2012.03.107 CrossRefGoogle Scholar
  22. 22.
    Vörös M, Deák P, Frauenheim T, Gali A (2010) The absorption of oxygenated silicon carbide nanoparticles. J Chem Phys 133(6):064705. doi: 10.1063/1.3464482 CrossRefGoogle Scholar
  23. 23.
    Dionízio Moreira M, Venezuela P, Schmidt TM (2008) The effects of oxygen on the surface passivation of InP nanowires. Nanotechnology 19(6):065203. doi: 10.1088/0957-4484/19/6/065203 CrossRefGoogle Scholar
  24. 24.
    Cuevas JL, Trejo A, Calvino M, Carvajal E, Cruz-Irisson M (2012) Ab-initio modeling of oxygen on the surface passivation of 3CSiC nanostructures. Appl Surf Sci. doi: 10.1016/j.apsusc.2012.03.175
  25. 25.
    Hammer B, Hansen LB, Nørskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew–Burke––Ernzerhof functionals. Phys Rev B 59(11):7413–7421Google Scholar
  26. 26.
    Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41(11):7892–7895. doi: 10.1103/PhysRevB.41.7892 CrossRefGoogle Scholar
  27. 27.
    Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Kristallogr 220:567–570. doi: 10.1524/zkri.220.5.567.65075 CrossRefGoogle Scholar
  28. 28.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192. doi: 10.1103/PhysRevB.13.5188 CrossRefGoogle Scholar
  29. 29.
    Pfrommer BG, Côté M, Louie SG, Cohen ML (1997) Relaxation of crystals with the quasi-Newton method. J Comput Phys 131(1):233–240. doi: 10.1006/jcph.1996.5612 CrossRefGoogle Scholar
  30. 30.
    Sk MA, Ng M-F, Yang S-W, Lim KH (2011) Water induced electrical hysteresis in germanium nanowires: a theoretical study. Phys Chem Chem Phys 13(24):11663. doi: 10.1039/c1cp20228f CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alejandro Trejo
    • 1
  • José Luis Cuevas
    • 1
  • Fernando Salazar
    • 1
  • Eliel Carvajal
    • 1
  • Miguel Cruz-Irisson
    • 1
    Email author
  1. 1.Instituto Politécnico NacionalESIME-CulhuacanMexico CityMexico

Personalised recommendations