Advertisement

Journal of Molecular Modeling

, Volume 19, Issue 5, pp 2015–2026 | Cite as

Comparative theoretical study of the UV/Vis absorption spectra of styrylpyridine compounds using TD-DFT calculations

  • Maria Eugenia Castro
  • M. Judith Percino
  • Victor M. Chapela
  • Guillermo Soriano-Moro
  • Margarita Ceron
  • Francisco J. MelendezEmail author
Original Paper

Abstract

This study examined absorption properties of 2-styrylpyridine, trans-2-(m-cyanostyryl)pyridine, trans-2-[3-methyl-(m-cyanostyryl)]pyridine, and trans-4-(m-cyanostyryl)pyridine compounds based on theoretical UV/Vis spectra, with comparisons between time-dependent density functional theory (TD-DFT) using B3LYP, PBE0, and LC-ωPBE functionals. Basis sets 6–31G(d), 6–31G(d,p), 6–31+G(d,p), and 6–311+G(d,p) were tested to compare molecular orbital energy values, gap energies, and maxima absorption wavelengths. UV/Vis spectra were calculated from fully optimized geometry in B3LYP/6–311+G(d,p) in gas phase and using the IEFPCM model. B3LYP/6–311+G(d,p) provided the most stable form, a planar structure with parameters close to 2-styrylpyridine X-ray data. Isomeric structures were evaluated by full geometry optimization using the same theory level. Similar energetic values were found: ∼4.5 kJ mol−1 for 2-styrylpyridine and ∼1 kJ mol−1 for derivative compound isomers. The 2-styrylpyridine isomeric structure differed at the pyridine group N-atom position; structures considered for the other compounds had the cyano group attached to the phenyl ring m-position equivalent. The energy difference was almost negligible between m-cyano-substituted molecules, but high energy barriers existed for cyano-substituted phenyl ring torsion. TD-DFT appeared to be robust and accurate approach. The B3LYP functional with the 6–31G(d) basis set produced the most reliable λmax values, with mean errors of 0.5 and 12 nm respect to experimental values, in gas and solution, respectively. The present data describes effects on the λmax changes in the UV/Vis absorption spectra of the electron acceptor cyano substituent on the phenyl ring, the electron donor methyl substituent, and the N-atom position on the electron acceptor pyridine ring, causing slight changes respect to the 2-styrylpyridine title compound.

Keywords

Absorption maxima Frontier molecular orbitals TD-DFT calculations 

Notes

Acknowledgments

This work has been co-financed by the projects PEZM-NAT II-G, SOMJ-NAT II-I, and MEBF-NAT II-G of the Vicerrectoría de Investigación y Estudios de Posgrado, Benemérita Universidad Autónoma de Puebla. M. E. Castro thanks Consejo Nacional de Ciencia y Tecnología, Mexico, for a grant (#148457), and Programa de Mejoramiento del Profesorado de la Secretaría de Educación Pública, Mexico (project BUAP-PTC-258).

References

  1. 1.
    Langer G (1905) Ber 38:3704–3709Google Scholar
  2. 2.
    Shaw BD, Wagstaff EA (1933) J Chem Soc 77–79Google Scholar
  3. 3.
    Phillips AP (1947) J Org Chem 12:333–341CrossRefGoogle Scholar
  4. 4.
    Horwitz L (1955) J Am Chem Soc 77:1687–1690CrossRefGoogle Scholar
  5. 5.
    Trippett S (1960) Advances in organic chemistry. In: Raphael RA, Taylor EC, Wynberg H (eds) Methods and resolutions, vol I. Interscience, New York, p 83Google Scholar
  6. 6.
    Williams JLR, Adel RE, Carlson JM, Reynolds GA, Borden DG, Ford JA Jr (1963) J Org Chem 28:387–390CrossRefGoogle Scholar
  7. 7.
    Clavreul R, Bloch B, Brigodiot M, Maréchal E (1987) Makromol Chem 188:47–65CrossRefGoogle Scholar
  8. 8.
    Percino MJ, Chapela VM, Salmón M, Espinosa-Pérez G, Herrera AM, Flores A (1997) J Chem Crystallogr 27(9):549–552CrossRefGoogle Scholar
  9. 9.
    Percino MJ, Chapela VM, Sánchez A, Maldonado-Rivera JL (2006) Chem Indian J CAIJ 3(9–10):262–267Google Scholar
  10. 10.
    Percino MJ, Chapela VM, Montiel L-F, Pérez-Gutiérrez E, Maldonado JL (2010) Chem Pap 64(3):360–367CrossRefGoogle Scholar
  11. 11.
    Chapela VM, Percino MJ, Rodríguez-Barbarín C (2003) J Chem Crystal 33(2):77–83CrossRefGoogle Scholar
  12. 12.
    Atalay Y, Basoglu A, Avci D (2008) Spectrochim Acta A 69:460–466CrossRefGoogle Scholar
  13. 13.
    Daku LML, Linares J, Boillot M-L (2007) ChemPhysChem 8:1402–1416CrossRefGoogle Scholar
  14. 14.
    Melendez FJ, Urzúa O, Percino MJ, Chapela VM (2010) Int J Quantum Chem 110:838–849Google Scholar
  15. 15.
    Lewis FD, Weigel WJ (2000) Phys Chem A 104:8146–8153CrossRefGoogle Scholar
  16. 16.
    Pinto MR, Hu B, Karasz FE, Akcelrud L (2000) Polymer 41:2603–2611CrossRefGoogle Scholar
  17. 17.
    Liu SL, Jiang X, Liu S, Herguth P, Jen AKY (2002) Macromolecules 35:3532–3538CrossRefGoogle Scholar
  18. 18.
    Davis R, Kumar NSS, Abraham S, Suresh CH, Rath NP, Tamaoki N, Das S (2008) J Phys Chem C 112:2137–2146CrossRefGoogle Scholar
  19. 19.
    Runge E, Gross EKU (1984) Phys Rev Lett 52:997–1000CrossRefGoogle Scholar
  20. 20.
    Gross EKU, Kohn W (1985) Phys Rev Lett 55:2850–2852CrossRefGoogle Scholar
  21. 21.
    Gross EKU, Kohn W (1990) Adv Quantum Chem 21:255–291CrossRefGoogle Scholar
  22. 22.
    Wacker OJ, Kümmel R, Gross EKU (1994) Phys Rev Lett 73:2915–2918CrossRefGoogle Scholar
  23. 23.
    Marques MAL, Gross EKU (2004) Annu Rev Phys Chem 55:427–455CrossRefGoogle Scholar
  24. 24.
    Chen PC, Chieh YC (2003) J Mol Struct (THEOCHEM) 624:191–200CrossRefGoogle Scholar
  25. 25.
    Stratmann RE, Scuseria GE, Frisch MJ (1998) J Chem Phys 109(19):8218–8224CrossRefGoogle Scholar
  26. 26.
    Guillaumont D, Nakamura S (2000) Dyes Pigment 46:85–92CrossRefGoogle Scholar
  27. 27.
    Improta R, Santoro F (2005) J Phys Chem A 109:10058–10067CrossRefGoogle Scholar
  28. 28.
    Belletete M, Morin J-F, Leclerc M, Durocher G (2005) J Phys Chem A 109:6953–6959CrossRefGoogle Scholar
  29. 29.
    Badaeva EA, Timofeeva TV, Masunov A, Tretiak S (2005) J Phys Chem A 109:7276–7284CrossRefGoogle Scholar
  30. 30.
    Hommen de Mello P, Mennucci B, Tomasi J, da Silva ABF (2005) Theor Chem Accounts 113:274–280CrossRefGoogle Scholar
  31. 31.
    Hartley CS (2011) J Org Chem 76:9188–9191CrossRefGoogle Scholar
  32. 32.
    Jacquemin D, Assfeld X, Preat J, Perpéte EA (2007) Mol Phys 105:325–331CrossRefGoogle Scholar
  33. 33.
    Jacquemin D, Perpete EA, Scuseria GE, Ciofini I, Adamo C (2008) J Chem Theor Comput 4:123–135CrossRefGoogle Scholar
  34. 34.
    Jacquemin D, Wathelet V, Perpete EA, Adamo C (2009) J Chem Theor Comput 5:2420–2435CrossRefGoogle Scholar
  35. 35.
    Jacquemin D, Perpete EA, Ciofini I, Adamo C (2010) J Chem Theor Comput 6:1532–1537CrossRefGoogle Scholar
  36. 36.
    Guido CA, Jacquemin D, Adamo C, Mennuci B (2010) J Phys Chem A 114:13402–13410CrossRefGoogle Scholar
  37. 37.
    Tomasi J, Persico M (1994) Chem Rev 94:2027–2094CrossRefGoogle Scholar
  38. 38.
    Cossi M, Rega N, Scalmani M, Barone V (2001) J Chem Phys 114:5691–5701CrossRefGoogle Scholar
  39. 39.
    Improta R, Barone V (2004) J Am Chem Soc 126:14320–14321CrossRefGoogle Scholar
  40. 40.
    Shukla MK, Leszczynski J (2004) J Phys Chem A 108:10367–10375CrossRefGoogle Scholar
  41. 41.
    André JM, Delhalle J, Brédas JL (1991) Quantum chemistry aided design of organic polymers—an introduction to the quantum chemistry of polymers and its applications. World Scientific, LondonGoogle Scholar
  42. 42.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  43. 43.
    Adamo C, Barone V (1999) J Chem Phys 110:6158–6169CrossRefGoogle Scholar
  44. 44.
    Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) J Chem Phys 120:8425–8433CrossRefGoogle Scholar
  45. 45.
    Hariharan PC, Pople JA (1973) Theor Chem Accounts 28:213–222Google Scholar
  46. 46.
    Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724–728CrossRefGoogle Scholar
  47. 47.
    McLean AD, Chandler GS (1980) J Chem Phys 72:5639–5648CrossRefGoogle Scholar
  48. 48.
    Casida ME, Jamorski C, Casida KC, Salahub DR (1998) J Chem Phys 108:4439–4449CrossRefGoogle Scholar
  49. 49.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  50. 50.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.1. Gaussian Inc, WallingfordGoogle Scholar
  51. 51.
    Muñoz-Caro C, Niño A, Mora M, Reyes S, Melendez FJ, Castro ME (2005) J Mol Struct (THEOCHEM) 726:115–124CrossRefGoogle Scholar
  52. 52.
    Castro ME, Percino MJ, Chapela VM, Ceron M, Soriano-Moro G, Lopez-Cruz J, Melendez FJ (2012) Molecules submittedGoogle Scholar
  53. 53.
    Wiberg KB, Stratmann RE, Frisch MJ (1998) Chem Phys Lett 297:60–64CrossRefGoogle Scholar
  54. 54.
    Wiberg KB, De Olivera AE, Trucks G (2002) J Phys Chem A 106:4192–4199CrossRefGoogle Scholar
  55. 55.
    Jacquemin D, Preat J, Charlot M, Wathelet V, Andre JM, Perpète EA (2004) J Chem Phys 121:1736–1743CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Maria Eugenia Castro
    • 1
  • M. Judith Percino
    • 1
  • Victor M. Chapela
    • 1
  • Guillermo Soriano-Moro
    • 1
  • Margarita Ceron
    • 1
  • Francisco J. Melendez
    • 2
    Email author
  1. 1.Centro de Química, Instituto de Ciencias, Universidad Autónoma de Puebla, Complejo de Ciencias, ICUAPPueblaMexico
  2. 2.Lab. de Química Teórica, Centro de Investigación, Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Autónoma de PueblaPueblaMexico

Personalised recommendations