Advertisement

Journal of Molecular Modeling

, Volume 19, Issue 5, pp 2007–2014 | Cite as

Three–dimensional effective mass Schrödinger equation: harmonic and Morse-type potential solutions

  • G. OvandoEmail author
  • J. Morales
  • J. L. López-Bonilla
Original Paper

Abstract

In this work, a scheme to generate exact wave functions and eigenvalues for the spherically symmetric three-dimensional position-dependent effective mass Schrödinger equation is presented. The methodology is implemented by means of separation of variables and point canonical transformations that allow to recognize a radial dependent equation with important differences as compared with the one-dimensional position dependent mass problem, which has been widely studied. This situation deserves to consider the boundary conditions of the emergent problem. To obtain specific exact solutions, the methodology requires known solutions of ordinary one-dimensional Schrödinger equations. We have preferred those applications that use the harmonic oscillator and the Morse oscillator solutions.

Keyword

Harmonic potential Morse potential Position-dependent effective mass Three dimensional Schrödinger equation 

Notes

Acknowledgments

G. O. and J. M. are thankful for the support received from CONACYT-MEXICO through the SNI program.

References

  1. 1.
    Bastard G (1988) Wave mechanics applied to semiconductor heterostructures. Editions de Physique, Les UlisGoogle Scholar
  2. 2.
    Einevoll GT, Hemmer PC, Thomsen J (1990) Phys Rev B 42:3485, and references there inCrossRefGoogle Scholar
  3. 3.
    Von Roos O, Mavromatis H (1985) Phys Rev B 31:2294CrossRefGoogle Scholar
  4. 4.
    Weisbuch C, Vinter B (1993) Quantum semiconductor heterostructures. Academic, New YorkGoogle Scholar
  5. 5.
    Landsberg GT (1969) Solid state theory: methods and applications. Wiley, LondonGoogle Scholar
  6. 6.
    Renan R, Pacheco MH, Almeida CAS (2000) J Phys A 33(50):L509CrossRefGoogle Scholar
  7. 7.
    Plastino AR, Casas M, Plastino A (2001) Phys Lett A 281:297CrossRefGoogle Scholar
  8. 8.
    Ring P, Schuck P (1980) The nuclear many body poblem. Springer, Heidelberg, p 211CrossRefGoogle Scholar
  9. 9.
    Arias de Saavedra F, Boronat J, Polls A, Fabrocini A (1994) Phys Rev B 50:4248CrossRefGoogle Scholar
  10. 10.
    Puente A, Serra L, Casas M (1994) Z Phys D 31:283CrossRefGoogle Scholar
  11. 11.
    Barranco M, Pi M, Gatica SM, Hernandez ES, Navarro J (1997) Phys Rev B 56:8997CrossRefGoogle Scholar
  12. 12.
    Foulkes WMC, Schluter M (1990) Phys Rev B 42:11505CrossRefGoogle Scholar
  13. 13.
    Bonatsos D, Georgoudis PE, Lenis D, Minkov N, Quesne C (2011) Phys Rev C 83:044321CrossRefGoogle Scholar
  14. 14.
    Boztosun I, Bonatsos D, Inci I (2008) Phys Rev C 77:044302CrossRefGoogle Scholar
  15. 15.
    Geller MR, Kohn E (1993) Phys Rev Lett 70:3103CrossRefGoogle Scholar
  16. 16.
    Serra L, Lipparini E (1997) Europhys Lett 40:667CrossRefGoogle Scholar
  17. 17.
    Barranco M, Hernández ES, Navarro J (1996) Phys Rev B 54:7394CrossRefGoogle Scholar
  18. 18.
    Harrison P (2000) Quantum wells, wires and dots. Wiley, New York Google Scholar
  19. 19.
    Li YM, Lu HM, Voskoboynikov O, Lee CP, Sze SM (2003) Surf Sci 532:811CrossRefGoogle Scholar
  20. 20.
    von Roos O (1983) Phys Rev B 27:7547CrossRefGoogle Scholar
  21. 21.
    Marc J, Leblond L (1995) Phys Rev A 52:1845CrossRefGoogle Scholar
  22. 22.
    de Souza Dutra A, Almeida CAS (2000) Phys Lett A 275:25CrossRefGoogle Scholar
  23. 23.
    Bagchi B, Gorain P, Quesne C, Roychoudhury R (2004) Mod Phys Lett A 19:2765CrossRefGoogle Scholar
  24. 24.
    Plastino AR, Puente A, Casas M, Garcias F, Plastino A (2000) Rev Mex Fis 46:78Google Scholar
  25. 25.
    Yu J, Dong SH (2004) Phys Lett A 325:194CrossRefGoogle Scholar
  26. 26.
    Solimmanejad M, Moayedi SK, Tavakoli M (2006) Int J Quant Chem 106:1027CrossRefGoogle Scholar
  27. 27.
    Tezcan C, Sever R (2007) J Math Chem 42:387CrossRefGoogle Scholar
  28. 28.
    Tezcan C, Sever R (2008) Int J Theor Phys 47:1471CrossRefGoogle Scholar
  29. 29.
    Jiang L, Yi LZ, Jia CS (2005) Phys Lett A 345:279CrossRefGoogle Scholar
  30. 30.
    Bagchi B, Gorain P, Quesne C, Roychoudhury R (2005) Europhys Lett 72:155CrossRefGoogle Scholar
  31. 31.
    Ju GX, Cai CY, Xiang Y, Ren ZZ (2007) Commun Theor Phys 47:1001CrossRefGoogle Scholar
  32. 32.
    Roy B, Roy P (2002) J Phys A Math Gen 35:3961CrossRefGoogle Scholar
  33. 33.
    Koc R, Koca M (2003) J Phys A Math Gen 36:8105CrossRefGoogle Scholar
  34. 34.
    Roy B (2005) Europhys Lett 72:1CrossRefGoogle Scholar
  35. 35.
    Dong SH, Peña JJ, Pacheco-García C, García-Ravelo J (2007) Mod Phys Lett A 22:1039CrossRefGoogle Scholar
  36. 36.
    Plastino AR, Rigo A, Casas M, Garcias F, Plastino A (1999) Phys Rev A 60:4318CrossRefGoogle Scholar
  37. 37.
    Milanovic V, Ikovic Z (1999) J Phys A Math Gen 32:7001CrossRefGoogle Scholar
  38. 38.
    Gönül B, Gönül B, Tutcu D, Özer O (2002) Mod Phys Lett A 17:2057CrossRefGoogle Scholar
  39. 39.
    Quesne C (2006) Ann Phys 321:1221CrossRefGoogle Scholar
  40. 40.
    Aktas M, Sever R (2007) J Math Chem 43:92CrossRefGoogle Scholar
  41. 41.
    Bagchi B, Gorain P, Quesne C, Roychoudhury R (2004) Czech J Phys 54:1019CrossRefGoogle Scholar
  42. 42.
    Gönül B, Özer O, Gönül B, Üzgün F (2002) Mod Phys Lett A 17:2453CrossRefGoogle Scholar
  43. 43.
    Bagchi B, Bannerjee A, Quesne C, Tkachuk VM (2005) J Phys A Math Gen 38:2929CrossRefGoogle Scholar
  44. 44.
    Quesne C, Bagchi B, Banerjee A, Tkachuk VM (2006) Bulg J Phys 33:308Google Scholar
  45. 45.
    Ganguly A, Nieto LM (2007) J Phys A Math Gen 40:7265CrossRefGoogle Scholar
  46. 46.
    Peña JJ, Morales J, Zamora-Gallardo E, García-Ravelo J (2004) Int J Quant Chem 100:957CrossRefGoogle Scholar
  47. 47.
    Peña JJ, Ovando G, Morales J, García-Ravelo J, Pacheco-García C (2008) Int J Quant Chem 108:2906CrossRefGoogle Scholar
  48. 48.
    Morales J, Ovando G, Peña JJ (2010) Symmetries in nature. Symposium in memoriam Marcos Moshinsky. Am Inst Phys AIP-EUA 1323:233Google Scholar
  49. 49.
    Ovando G, Peña JJ, Morales J (2011) Progress in theoretical chemistry and physics, vol 22. Springer, Heidelberg, pp 33Google Scholar
  50. 50.
    Peña JJ, Ovando G, Morales J, García-Ravelo J, Pacheco-García C (2007) Int J Quant Chem 107:3039CrossRefGoogle Scholar
  51. 51.
    Alhaidari AD (2002) Phys Rev A 66:042116CrossRefGoogle Scholar
  52. 52.
    Yu J, Dong SH, Sun GH (2004) Phys Lett A 322:290CrossRefGoogle Scholar
  53. 53.
    Gang C (2004) Phys Lett A 329:22CrossRefGoogle Scholar
  54. 54.
    Cai CY, Ren ZZ, Ju GX (2005) Commun Theor Phys (Beijing, China) 43:1019CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.CBI—Area de Física Atómica Molecular AplicadaUniversidad Autónoma Metropolitana—AzcapotzalcoMexico CityMexico
  2. 2.Instituto Politécnico Nacional, ESIME-ZacatencoMexico CityMexico

Personalised recommendations