Abstract
Self-consistent-charge density-functional tight-binding (SCC-DFTB) approximated method was employed to investigate the structural, mechanical and electronic properties of the zigzag and armchair nano-fibriform silica (SNTs) and their outer surface organic modified derivatives (MSNTs) with internal radii in the range of 8 to 36 Å. The strain energy curves showed that the nanotubes structures are energetically more stable compared to the respective sheet structures. External hydroxyl dihedral angles in silica nanotubes have small influence, about 0.5 meV.atom−1, in the strain energy curve tendency of those materials favoring the zigzag chirality. The chemical modification of outer surface of SNTs by dimethyl silane group affects their relative stability favoring the armchair chirality in approximately 2 meV.atom−1. MSNTs have axial elastic constants, Young’s moduli, determined at the harmonic approximation, around 100 GPa smaller than the respective SNTs. The Young’s moduli of zigzag and armchair SNTs are in the range of 150–195 GPa and 232–260 GPa, respectively. And for the zigzag and armchair MSNTs these values are in the range of 77–89 and 110–140 GPa, respectively. The SNTs and MSNTs were characterized as insulators with band gaps around 8–10 eV.

Structural and electronic modifications of nano-fibriform silica as a result of dimethyl silane organic functionalization
This is a preview of subscription content,
to check access.








References
Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56. doi:10.1038/354056a0
Tenne R, Margulis L, Genut M, Hodes G (1992) Polyhedral and cylindrical structures of tungsten disulfite. Nature 360:444–446. doi:10.1038/360444a0
Hernández E, Goze C, Bernier P, Rubio A (1999) Elastic properties of single-wall nanotubes. Appl Phys A 68:287–292. doi:10.1007/s003390050890
Hernández E, Goze C, Bernier P, Rubio A (1998) Elastic properties of C and BxCyNz composite nanotubes. Phys Rev Lett 80:4502–4505. doi:10.1103/PhysRevLett.80.4502
Köhler T, Frauenheim T, Hajnal Z, Seifert G (2004) Tubular structures of GaS. Phys Rev B 69:193403. doi:10.1103/PhysRevB.69.193403
Seifert G, Terrones H, Terrones M, Jungnickel G, Frauenheim T (2000) Structure and electronic properties of MoS2 nanotubes. Phys Rev Lett 85:146–149. doi:10.1103/PhysRevLett.85.146
Guimarães L, Enyashin AN, Frenzel J, Heine T, Duarte HA, Seifert G (2007) Imogolite nanotubes: stability, electronic, and mechanical properties. ACS Nano 1:362–368. doi:10.1021/nn700184k
Guerra DL, Batista AC, Viana RR, Airoldi C (2010) Adsorption of methylene blue on raw and MTZ/imogolite hybrid surfaces: effect of concentration and calorimetric investigation. J Hazard Mater 183:81–86. doi:10.1016/j.jhazmat.2010.06.109
Guerra DL, Batista AC, Viana RR, Airoldi C (2011) Adsorption of rubidium on raw and MTZ- and MBI-imogolite hybrid surfaces: an evidence of the chelate effect. Desalination 275:107–117. doi:10.1016/j.desal.2011.02.029
Ju S, Lin K, Lin K (2012) Electronic and structural properties of ultrathin SiO2 nanowires. J Phys Chem C 116:3918–3927. doi:10.1021/jp209436r
Liang Y, Xue B et al (2011) Preparation of silica nanowires using porous silicon as Si source. Appl Surf Sci 258:1470–1473. doi:10.1016/j.apsusc.2011.09.109
Yu DP, Hang QL et al (1998) Amorphous silica nanowires: Intensive blue light emitters. App Phys Lett 73:3076–3079. doi:10.1063/1.122677
Wang L, Lu A, Wang C, Zheng X, Zhao D, Liu R (2006) Nano-fibriform production of silica from natural chrysotile. J Colloid Interf Sci 295:436–439. doi:10.1016/j.jcis.2005.08.055
Wang L, Lu A et al (2006) Porous properties of nano-fibriform silica from natural chrysotile. Acta Geol Sin-Enl 80:180–184. doi:10.1111/j.1755-6724.2006.tb00228.x
Wang L, Lu A, Xiao Z, Ma J, Li Y (2009) Modification of nano-fibriform silica by dimethyldichlorosilane. Appl Surf Sci 255:7542–7546. doi:10.1016/j.apsusc.2009.04.024
Kim K, Park S (2012) Influence of 1-D silica nanotubes as drug adsorbent on release behaviors of tulobuterol-loaded porous microcapsules. Colloid Surf B 92:240–245. doi:10.1016/j.colsurfb.2011.11.048
Bai W, Yang YJ, Tao X, Chen JF, Tan TW (2012) Immobilization of lipase on aminopropyl-grafted mesoporous silica nanotubes for the resolution of (R, S)-1-phenylethanol. J Mol Catal B 76:82–88. doi:10.1016/j.molcatb.2011.11.005
Tang H, Liew K, Li J (2012) Cobalt catalysts supported on silica nanotubes for Fischer-Tropsch synthesis. Sci China Chem 55:145–150. doi:10.1007/s11426-011-4440-6
Lourenço MP, de Oliveira C, Oliveira AF, Guimarães L (2012) Structural, electronic, and mechanical properties of single-walled chrysotile nanotube models. J Phys Chem C 116:9405–9411. doi:10.1021/jp301048p
Oliveira AF, Seifert G, Heine T, Duarte HA (2009) Density-functional based tight-binding: an approximate DFT method. J Braz Chem Soc 20:1193–1205. doi:10.1590/S0103-50532009000700002
Elstner M, Porezag D et al (1998) Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B 58:7260–7268. doi:10.1103/PhysRevB.58.7260
Frauenheim T, Seifert G et al (2002) Atomistic simulations of complex materials; ground-state and excited-state properties. J Phys Cond Matter 14:3015–3047. doi:10.1088/0953-8984/14/11/313
Density functional based Tight Binding (and more). http://www.dftb-plus.info/. Accessed 21 August 2012
Frenzel J, Oliveira AF, Duarte HA, Heine T, Seifert G (2005) Structural and electronic properties of bulk gibbsite and gibbsite surfaces. Z Anorg Allg Chem 631:1267–1271. doi:10.1002/zaac.200500051
Luschtinetz R, Oliveira AF et al (2008) Adsorption of phosphonic and ethylphosphonic acid on aluminum oxides surface. Surf Sci 602:1347–1359. doi:10.1016/j.susc.2008.01.035
Luschtinetz R, Frenzel J, Milek T, Seifert G (2009) Adsorption of phosphonic acid at the TiO2 anatase (101) and rutile (110) surface. J Phys Chem C 113:5730–5740. doi:10.1021/jp8110343
dftb.org the DFTB website. http://www.dftb.org/parameters/. Accessed 21 August 2012
Nelder JA, Mead R (1965) A simplex method for function minimization. Comp J 7:308–314
Yarbro LA, Deming SN (1974) Selection and preprocessing of factors for simplex optimization. Anal Chim Acta 73:391–398. doi:10.1016/S0003-2670(01)85476-3
Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1999) Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge, pp 408–412
Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192. doi:10.1103/PhysRevB.13.5188
Nicholas JB, Hopfinger AJ, Trouw FR, Iton LE (1991) Molecular modeling of zeolite structure. 2. Structure and dynamics of silica sodalite and silicate force field. J Am Chem Soc 113:4792–4800. doi:10.1021/ja00013a012
Seifert G, Köhler T, Urbassek HM, Hernández E, Frauenheim T (2001) Tubular structures of silicon. Phys Rev B 63:193409. doi:10.1103/PhysRevB.63.193409
Marana NL, Sambrano JR, de Souza AR (2010) Propriedades eletrônicas, estruturais e constantes elásticas do ZnO. Química Nova 33:810–815. doi:10.1590/S0100-40422010000400009
Oh ES (2010) Elastic properties of boron-nitride nanotubes through the continuum lattice approach. Mater Lett 64:859–862. doi:10.1016/j.matlet.2010.01.041
Lier GV, Alsenoy CV, Doren VV, Geerling P (2000) Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene. Chem Phys Lett 326:181–185. doi:10.1016/S0009-2614(00)00764-8
Guimarães L, Enyashin AN, Seifert G, Duarte HA (2010) Structural, electronic, and mechanical properties of single-walled halloysite nanotube models. J Phys Chem C 114:11358–11363. doi:10.1021/jp100902e
Acknowledgments
We would like to thank to Dr. Cláudio de Oliveira for the initial support of this work and for a copy of his computer program to build the tubular structures from the respective sheet. This work is supported by the Brazilian Initiative National Institute of Science and Technology for Mineral Resources, Water and Biodiversity – INCT-ACQUA (http://www.acqua-inct.org). The support from the Brazilian Agencies Conselho Nacional para o Desenvolvimento Científico e Tecnológico – CNPq and Fundação de Amparo a Pesquisa do Estado de Minas Gerais – FAPEMIG is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary materials
Below is the link to the electronic supplementary material.
ESM 1
(PDF 15 kb)
Rights and permissions
About this article
Cite this article
da Silva, M.C., dos Santos, E.C., Lourenço, M.P. et al. Structural, mechanical and electronic properties of nano-fibriform silica and its organic functionalization by dimethyl silane: a SCC-DFTB approach. J Mol Model 19, 1995–2005 (2013). https://doi.org/10.1007/s00894-012-1583-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00894-012-1583-0