Advertisement

Journal of Molecular Modeling

, Volume 19, Issue 5, pp 1995–2005 | Cite as

Structural, mechanical and electronic properties of nano-fibriform silica and its organic functionalization by dimethyl silane: a SCC-DFTB approach

  • Maurício Chagas da Silva
  • Egon Campos dos Santos
  • Maicon Pierre Lourenço
  • Hélio Anderson DuarteEmail author
Original Paper

Abstract

Self-consistent-charge density-functional tight-binding (SCC-DFTB) approximated method was employed to investigate the structural, mechanical and electronic properties of the zigzag and armchair nano-fibriform silica (SNTs) and their outer surface organic modified derivatives (MSNTs) with internal radii in the range of 8 to 36 Å. The strain energy curves showed that the nanotubes structures are energetically more stable compared to the respective sheet structures. External hydroxyl dihedral angles in silica nanotubes have small influence, about 0.5 meV.atom−1, in the strain energy curve tendency of those materials favoring the zigzag chirality. The chemical modification of outer surface of SNTs by dimethyl silane group affects their relative stability favoring the armchair chirality in approximately 2 meV.atom−1. MSNTs have axial elastic constants, Young’s moduli, determined at the harmonic approximation, around 100 GPa smaller than the respective SNTs. The Young’s moduli of zigzag and armchair SNTs are in the range of 150–195 GPa and 232–260 GPa, respectively. And for the zigzag and armchair MSNTs these values are in the range of 77–89 and 110–140 GPa, respectively. The SNTs and MSNTs were characterized as insulators with band gaps around 8–10 eV.

Figure

Structural and electronic modifications of nano-fibriform silica as a result of dimethyl silane organic functionalization

Keywords

Nano-fibriform Organic functionalization SCC-DFTB Silica Tight-binding 

Notes

Acknowledgments

We would like to thank to Dr. Cláudio de Oliveira for the initial support of this work and for a copy of his computer program to build the tubular structures from the respective sheet. This work is supported by the Brazilian Initiative National Institute of Science and Technology for Mineral Resources, Water and Biodiversity – INCT-ACQUA (http://www.acqua-inct.org). The support from the Brazilian Agencies Conselho Nacional para o Desenvolvimento Científico e Tecnológico – CNPq and Fundação de Amparo a Pesquisa do Estado de Minas Gerais – FAPEMIG is gratefully acknowledged.

Supplementary material

894_2012_1583_MOESM1_ESM.pdf (15 kb)
ESM 1 (PDF 15 kb)

References

  1. 1.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56. doi: 10.1038/354056a0 CrossRefGoogle Scholar
  2. 2.
    Tenne R, Margulis L, Genut M, Hodes G (1992) Polyhedral and cylindrical structures of tungsten disulfite. Nature 360:444–446. doi: 10.1038/360444a0 CrossRefGoogle Scholar
  3. 3.
    Hernández E, Goze C, Bernier P, Rubio A (1999) Elastic properties of single-wall nanotubes. Appl Phys A 68:287–292. doi: 10.1007/s003390050890 CrossRefGoogle Scholar
  4. 4.
    Hernández E, Goze C, Bernier P, Rubio A (1998) Elastic properties of C and BxCyNz composite nanotubes. Phys Rev Lett 80:4502–4505. doi: 10.1103/PhysRevLett.80.4502 CrossRefGoogle Scholar
  5. 5.
    Köhler T, Frauenheim T, Hajnal Z, Seifert G (2004) Tubular structures of GaS. Phys Rev B 69:193403. doi: 10.1103/PhysRevB.69.193403 CrossRefGoogle Scholar
  6. 6.
    Seifert G, Terrones H, Terrones M, Jungnickel G, Frauenheim T (2000) Structure and electronic properties of MoS2 nanotubes. Phys Rev Lett 85:146–149. doi: 10.1103/PhysRevLett.85.146 CrossRefGoogle Scholar
  7. 7.
    Guimarães L, Enyashin AN, Frenzel J, Heine T, Duarte HA, Seifert G (2007) Imogolite nanotubes: stability, electronic, and mechanical properties. ACS Nano 1:362–368. doi: 10.1021/nn700184k CrossRefGoogle Scholar
  8. 8.
    Guerra DL, Batista AC, Viana RR, Airoldi C (2010) Adsorption of methylene blue on raw and MTZ/imogolite hybrid surfaces: effect of concentration and calorimetric investigation. J Hazard Mater 183:81–86. doi: 10.1016/j.jhazmat.2010.06.109 CrossRefGoogle Scholar
  9. 9.
    Guerra DL, Batista AC, Viana RR, Airoldi C (2011) Adsorption of rubidium on raw and MTZ- and MBI-imogolite hybrid surfaces: an evidence of the chelate effect. Desalination 275:107–117. doi: 10.1016/j.desal.2011.02.029 CrossRefGoogle Scholar
  10. 10.
    Ju S, Lin K, Lin K (2012) Electronic and structural properties of ultrathin SiO2 nanowires. J Phys Chem C 116:3918–3927. doi: 10.1021/jp209436r CrossRefGoogle Scholar
  11. 11.
    Liang Y, Xue B et al (2011) Preparation of silica nanowires using porous silicon as Si source. Appl Surf Sci 258:1470–1473. doi: 10.1016/j.apsusc.2011.09.109 CrossRefGoogle Scholar
  12. 12.
    Yu DP, Hang QL et al (1998) Amorphous silica nanowires: Intensive blue light emitters. App Phys Lett 73:3076–3079. doi: 10.1063/1.122677 CrossRefGoogle Scholar
  13. 13.
    Wang L, Lu A, Wang C, Zheng X, Zhao D, Liu R (2006) Nano-fibriform production of silica from natural chrysotile. J Colloid Interf Sci 295:436–439. doi: 10.1016/j.jcis.2005.08.055 CrossRefGoogle Scholar
  14. 14.
    Wang L, Lu A et al (2006) Porous properties of nano-fibriform silica from natural chrysotile. Acta Geol Sin-Enl 80:180–184. doi: 10.1111/j.1755-6724.2006.tb00228.x Google Scholar
  15. 15.
    Wang L, Lu A, Xiao Z, Ma J, Li Y (2009) Modification of nano-fibriform silica by dimethyldichlorosilane. Appl Surf Sci 255:7542–7546. doi: 10.1016/j.apsusc.2009.04.024 CrossRefGoogle Scholar
  16. 16.
    Kim K, Park S (2012) Influence of 1-D silica nanotubes as drug adsorbent on release behaviors of tulobuterol-loaded porous microcapsules. Colloid Surf B 92:240–245. doi: 10.1016/j.colsurfb.2011.11.048 CrossRefGoogle Scholar
  17. 17.
    Bai W, Yang YJ, Tao X, Chen JF, Tan TW (2012) Immobilization of lipase on aminopropyl-grafted mesoporous silica nanotubes for the resolution of (R, S)-1-phenylethanol. J Mol Catal B 76:82–88. doi: 10.1016/j.molcatb.2011.11.005 CrossRefGoogle Scholar
  18. 18.
    Tang H, Liew K, Li J (2012) Cobalt catalysts supported on silica nanotubes for Fischer-Tropsch synthesis. Sci China Chem 55:145–150. doi: 10.1007/s11426-011-4440-6 CrossRefGoogle Scholar
  19. 19.
    Lourenço MP, de Oliveira C, Oliveira AF, Guimarães L (2012) Structural, electronic, and mechanical properties of single-walled chrysotile nanotube models. J Phys Chem C 116:9405–9411. doi: 10.1021/jp301048p CrossRefGoogle Scholar
  20. 20.
    Oliveira AF, Seifert G, Heine T, Duarte HA (2009) Density-functional based tight-binding: an approximate DFT method. J Braz Chem Soc 20:1193–1205. doi: 10.1590/S0103-50532009000700002 CrossRefGoogle Scholar
  21. 21.
    Elstner M, Porezag D et al (1998) Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B 58:7260–7268. doi: 10.1103/PhysRevB.58.7260 CrossRefGoogle Scholar
  22. 22.
    Frauenheim T, Seifert G et al (2002) Atomistic simulations of complex materials; ground-state and excited-state properties. J Phys Cond Matter 14:3015–3047. doi: 10.1088/0953-8984/14/11/313 CrossRefGoogle Scholar
  23. 23.
    Density functional based Tight Binding (and more). http://www.dftb-plus.info/. Accessed 21 August 2012
  24. 24.
    Frenzel J, Oliveira AF, Duarte HA, Heine T, Seifert G (2005) Structural and electronic properties of bulk gibbsite and gibbsite surfaces. Z Anorg Allg Chem 631:1267–1271. doi: 10.1002/zaac.200500051 CrossRefGoogle Scholar
  25. 25.
    Luschtinetz R, Oliveira AF et al (2008) Adsorption of phosphonic and ethylphosphonic acid on aluminum oxides surface. Surf Sci 602:1347–1359. doi: 10.1016/j.susc.2008.01.035 CrossRefGoogle Scholar
  26. 26.
    Luschtinetz R, Frenzel J, Milek T, Seifert G (2009) Adsorption of phosphonic acid at the TiO2 anatase (101) and rutile (110) surface. J Phys Chem C 113:5730–5740. doi: 10.1021/jp8110343 CrossRefGoogle Scholar
  27. 27.
    dftb.org the DFTB website. http://www.dftb.org/parameters/. Accessed 21 August 2012
  28. 28.
    Nelder JA, Mead R (1965) A simplex method for function minimization. Comp J 7:308–314CrossRefGoogle Scholar
  29. 29.
    Yarbro LA, Deming SN (1974) Selection and preprocessing of factors for simplex optimization. Anal Chim Acta 73:391–398. doi: 10.1016/S0003-2670(01)85476-3 CrossRefGoogle Scholar
  30. 30.
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1999) Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge, pp 408–412Google Scholar
  31. 31.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192. doi: 10.1103/PhysRevB.13.5188 CrossRefGoogle Scholar
  32. 32.
    Nicholas JB, Hopfinger AJ, Trouw FR, Iton LE (1991) Molecular modeling of zeolite structure. 2. Structure and dynamics of silica sodalite and silicate force field. J Am Chem Soc 113:4792–4800. doi: 10.1021/ja00013a012 CrossRefGoogle Scholar
  33. 33.
    Seifert G, Köhler T, Urbassek HM, Hernández E, Frauenheim T (2001) Tubular structures of silicon. Phys Rev B 63:193409. doi: 10.1103/PhysRevB.63.193409 CrossRefGoogle Scholar
  34. 34.
    Marana NL, Sambrano JR, de Souza AR (2010) Propriedades eletrônicas, estruturais e constantes elásticas do ZnO. Química Nova 33:810–815. doi: 10.1590/S0100-40422010000400009 CrossRefGoogle Scholar
  35. 35.
    Oh ES (2010) Elastic properties of boron-nitride nanotubes through the continuum lattice approach. Mater Lett 64:859–862. doi: 10.1016/j.matlet.2010.01.041 CrossRefGoogle Scholar
  36. 36.
    Lier GV, Alsenoy CV, Doren VV, Geerling P (2000) Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene. Chem Phys Lett 326:181–185. doi: 10.1016/S0009-2614(00)00764-8 CrossRefGoogle Scholar
  37. 37.
    Guimarães L, Enyashin AN, Seifert G, Duarte HA (2010) Structural, electronic, and mechanical properties of single-walled halloysite nanotube models. J Phys Chem C 114:11358–11363. doi: 10.1021/jp100902e CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Maurício Chagas da Silva
    • 1
  • Egon Campos dos Santos
    • 1
  • Maicon Pierre Lourenço
    • 1
  • Hélio Anderson Duarte
    • 1
    Email author
  1. 1.Grupo de Pesquisa em Química Inorgânica Teórica, Departamento de QuímicaICEx – Universidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations