Journal of Molecular Modeling

, Volume 19, Issue 5, pp 1985–1994 | Cite as

Effect of stepwise microhydration on the methylammonium···phenol and ammonium···phenol interaction

  • Ana A. Rodríguez-Sanz
  • J. Carrazana-García
  • Enrique M. Cabaleiro-LagoEmail author
  • Jesús Rodríguez-Otero
Original Paper


A computational study has been performed for studying the characteristics of the interaction of phenol with ammonium and methylammonium cations. The effect of the presence of water molecules has also been considered by microhydrating the clusters with up to three water molecules. Clusters of phenol with ammonium and methylammonium cations present similar characteristics, though ammonium complexes have been found to be more stable than the methylammonium ones. The first water molecule included in the complexes interacts with a N-H group of ammoniun cations and simultaneously with the hydroxyl oxygen atom of phenol (or the aromatic ring). This first water molecule is more tightly bound in the complex, so the stability gain as more water molecules are included drops significantly by 2-3 kcal mol−1 with respect to the first one. As more water molecules are included, the differences between favorable coordination sites (the cation, the hydroxyl group or a previous water molecule) decrease. As a consequence, several of the most stable complexes located including three water molecules already exhibit hydrogen bonds between the hydroxyl group and one water molecule. The results indicate that a cyclic pattern formed by a series of hydrogen bonds: π···H-N-H···O-H···O-ϕ, is characteristic of the most stable minima, being kept as more water molecules are included in the system. Therefore, this pattern can be expected to be crucial in ammonium cations···phenol interaction if exposed to the solvent to any degree.


Ab initio calculation Cation···π interactions Microhydration Non-covalent interactions Solvent effects 



The authors thank the financial support from the Ministerio de Ciencia e Innovación and the ERDF 2007–2013 (Grant No. CTQ2009-12524). We are also thankful to the Centro de Supercomputación de Galicia (CESGA) for the use of their computers. A. A. R.-S. also thanks Spanish Ministerio Ciencia e Innovación for a FPI grant.

Supplementary material

894_2012_1579_MOESM1_ESM.doc (3.6 mb)
ESM 1 (DOC 3640 kb)


  1. 1.
    Salonen LM, Ellermann M, Diederich F (2011) Aromatic rings in chemical and biological recognition: energetics and structures. Angew Chem Int Ed 50(21):4808–4842. doi: 10.1002/anie.201007560 CrossRefGoogle Scholar
  2. 2.
    Hobza P, Zaradnik R (1988) Intermolecular complexes: the role of van der Waals systems in physical chemistry and the biodisciplines. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Meyer EA, Castellano RK, Diederich F (2003) Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Ed 42(35):4120. doi: 10.1002/anie.200390574 CrossRefGoogle Scholar
  4. 4.
    Lehn JM (1995) Supramolecular chemistry: concepts and perspectives. VCH, WeinheimCrossRefGoogle Scholar
  5. 5.
    Voegtle F (ed) (1995) Supramolecular chemistry: an introduction. vol Copyright (C) 2011 American Chemical Society (ACS). Maruzen Co, LtdGoogle Scholar
  6. 6.
    Voegtle F (ed) (1996) Comprehensive supramolecular chemistry, volume 2: molecular recognition: receptors for molecular guests. vol Copyright (C) 2011. American Chemical Society (ACS), PergamonGoogle Scholar
  7. 7.
    Ma JC, Dougherty DA (1997) The Cation − π Interaction. Chem Rev 97(5):1303–1324. doi: 10.1021/cr9603744 CrossRefGoogle Scholar
  8. 8.
    Scrutton NS, Raine AR (1996) Cation-pi bonding and amino-aromatic interactions in the biomolecular recognition of substituted ammonium ligands. Biochem J 319(1):1–8Google Scholar
  9. 9.
    Gallivan JP, Dougherty DA (1999) Cation-π interactions in structural biology. Proc Natl Acad Sci USA 96:9459–9464CrossRefGoogle Scholar
  10. 10.
    Dougherty DA (2007) dougherty journal nutrition aromatic amino acids. J Nutr 137:1504S–1508SGoogle Scholar
  11. 11.
    Waters ML (2004) Aromatic interactions in peptides: impact on structure and function. Peptide Sci 76(5):435–445. doi: 10.1002/bip.20144 CrossRefGoogle Scholar
  12. 12.
    Gallivan JP, Dougherty DA (2000) A computational study of cation-π interactions vs salt bridges in aqueous media: implications for protein engineering. J Am Chem Soc 122:870–874CrossRefGoogle Scholar
  13. 13.
    Anderson MA, Ogbay B, Arimoto R, Sha W, Kisselev OG, Cistola DP, Marshall GR (2006) Relative strength of Cation-π vs salt-bridge interactions: the Gtα(340–350) Peptide/Rhodopsin System. J Am Chem Soc 128(23):7531–7541. doi: 10.1021/ja058513z CrossRefGoogle Scholar
  14. 14.
    Berry BW, Elvekrog MM, Tommos C (2007) Environmental modulation of protein cation-π interactions. J Am Chem Soc 129(17):5308–5309. doi: 10.1021/ja068957a CrossRefGoogle Scholar
  15. 15.
    Hughes RM, Benshoff ML, Waters ML (2007) Effects of chain length and N-methylation on a cation-π interaction in a β-hairpin peptide. Chem Eur J 13:5753–5764. doi: 10.1002/chem.200601753 CrossRefGoogle Scholar
  16. 16.
    Hughes RM, Waters ML (2005) Influence of N-Methylation on a cation-π interaction produces a remarkably stable β-hairpin peptide. J Am Chem Soc 127:6518–6519. doi: 10.1021/ja0507259 CrossRefGoogle Scholar
  17. 17.
    Hughes RM, Waters ML (2006) Effects of lysine acetylation in a β-hairpin peptide: comparison of an amide-π and a cation-π interaction. J Am Chem Soc 128:13586–13591. doi: 10.1021/ja0648460 CrossRefGoogle Scholar
  18. 18.
    Hughes RM, Waters ML (2006) Arginine methylation in a β-hairpin peptide: implications for Arg-π interactions, ΔCp° and the cold denatured state. J Am Chem Soc 128:12735–12742. doi: 10.1021/ja061656g CrossRefGoogle Scholar
  19. 19.
    Khandelia H, Kaznessis YN (2006) Cation − π interactions stabilize the structure of the antimicrobial peptide indolicidin near membranes: molecular dynamics simulations. J Phys Chem B 111(1):242–250. doi: 10.1021/jp064776j CrossRefGoogle Scholar
  20. 20.
    Mason PE, Dempsey CE, Neilson GW, Kline SR, Brady JW (2009) Preferential interactions of guanidinum ions with aromatic groups over aliphatic groups. J Am Chem Soc 131(46):16689–16696. doi: 10.1021/ja903478s CrossRefGoogle Scholar
  21. 21.
    Riemen AJ, Waters ML (2009) Design of highly stabilized β-hairpin peptides through cation − π interactions of lysine and N-Methyllysine with an aromatic pocket†. Biochemistry 48(7):1525–1531. doi: 10.1021/bi801706k CrossRefGoogle Scholar
  22. 22.
    Shi Z, Olson CA, Kallenbach NR (2002) Cation − π interaction in model α-helical peptides. J Am Chem Soc 124(13):3284–3291. doi: 10.1021/ja0174938 CrossRefGoogle Scholar
  23. 23.
    Tatko CD, Waters ML (2003) cation pi en beta-hairpin. Protein Sci 12:2443–2452CrossRefGoogle Scholar
  24. 24.
    Riley KE, Hobza P (2011) Noncovalent interactions in biochemistry. WIREs Comput Mol Sci 1(1):3–17. doi: 10.1002/wcms.8 CrossRefGoogle Scholar
  25. 25.
    Sherill CD (2009) Computations of noncovalent π interactions. In: Reviews in computational chemistry, vol 26. Wiley, New York, pp 1–38Google Scholar
  26. 26.
    Adamo C, Berthier G, Savinelli R (2004) Solvation effects on cation–p interactions: a test study involving the quaternary ammonium ion. Theor Chim Acta 111(2):176–181. doi: 10.1007/s00214-003-0507-6 CrossRefGoogle Scholar
  27. 27.
    Reddy AS, Zipse H, Sastry GN (2007) Cation − π interactions of bare and coordinatively saturated metal ions: contrasting structural and energetic characteristics. J Phys Chem B 111(39):11546–11553. doi: 10.1021/jp075768l CrossRefGoogle Scholar
  28. 28.
    Singh NJ, Min SK, Kim DY, Kim KS (2009) Comprehensive energy analysis for various types of π-interaction. J Chem Theor Comput 5(3):515–529. doi: 10.1021/ct800471b CrossRefGoogle Scholar
  29. 29.
    Xu Y, Shen J, Zhu W, Luo X, Chen K, Jiang H (2005) Influence of the water molecule on cation − π interaction: Ab Initio second order Møller − Plesset Perturbation Theory (MP2) calculations. J Pys Chem B 109(12):5945–5949. doi: 10.1021/jp044568w CrossRefGoogle Scholar
  30. 30.
    Cabaleiro-Lago EM, Rodriguez-Otero J, Pena-Gallego A (2011) Effect of microhydration on the guanidinium···benzene interaction. J Chem Phys 135(21):214301–214309CrossRefGoogle Scholar
  31. 31.
    Feller D, Feyereisen MW (1993) Ab initio study of hydrogen bonding in the phenol-water system. J Comput Chem 14(9):1027–1035CrossRefGoogle Scholar
  32. 32.
    Watanabe H, Iwata S (1996) Theoretical studies of geometric structures of phenol-water clusters and their infrared absorption spectra in the O-H stretching region. J Chem Phys 105(2):420–431CrossRefGoogle Scholar
  33. 33.
    Gerhards M, Kleinermanns K (1995) Structure and vibrations of phenol(H2O)2. J Chem Phys 103(17):7392–7400CrossRefGoogle Scholar
  34. 34.
    Wu R, Brutschy B (2004) Study on the structure and intra- and intermolecular hydrogen bonding of 2-methoxyphenol. (H2O)n (n = 1,2). Chem Phys Lett 390(1–3):272–278CrossRefGoogle Scholar
  35. 35.
    Benoit DM, Clary DC (2000) Quantum simulation of phenol-water clusters. J Phys Chem A 104(23):5590–5599CrossRefGoogle Scholar
  36. 36.
    Ebata T, Fujii A, Mikami N (1996) Structures of size selected hydrogen-bonded phenol-(H2O)n clusters in S0, S1 and ion. Int J Mass Spectrom 159:111–124CrossRefGoogle Scholar
  37. 37.
    Janzen C, Spangenberg D, Roth W, Kleinermanns K (1999) Structure and vibrations of phenol(H2O)7,8 studied by infrared-ultraviolet and ultraviolet-ultraviolet double-resonance spectroscopy and ab initio theory. J Chem Phys 110(20):9898–9907CrossRefGoogle Scholar
  38. 38.
    Roth W, Schmitt M, Jacoby C, Spangenberg D, Janzen C, Kleinermanns K (1998) Double resonance spectroscopy of phenol(H2O)1–12: evidence for ice-like structures in aromatic-water clusters? Chem Phys 239(1–3):1–9CrossRefGoogle Scholar
  39. 39.
    Marshall MS, Steele RP, Thanthiriwatte KS, Sherrill CD (2009) Potential energy curves for cation − π interactions: off-axis configurations are also attractive. J Phys Chem A 113(48):13628–13632. doi: 10.1021/jp906086x CrossRefGoogle Scholar
  40. 40.
    Lee HM, Tarakeshwar P, Park J, Kołaski MR, Yoon YJ, Yi HB, Kim WY, Kim KS (2004) Insights into the structures, energetics, and vibrations of monovalent cation − (Water)1–6 clusters†. J Phys Chem A 108(15):2949–2958. doi: 10.1021/jp0369241 CrossRefGoogle Scholar
  41. 41.
    Chalasinski G, Szczesniak MM (2000) State of the art and challenges of the ab initio theory of intermolecular interactions. Chem Rev 100(11):4227–4252CrossRefGoogle Scholar
  42. 42.
    Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566CrossRefGoogle Scholar
  43. 43.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, Wallingford, CTGoogle Scholar
  44. 44.
    Vaden TD, Lisy JM (2004) Characterization of hydrated Na+(phenol) and K+(phenol) complexes using infrared spectroscopy. J Chem Phys 120:721–730. doi: 10.1063/1.1630962 CrossRefGoogle Scholar
  45. 45.
    Lee JY, Lee SJ, Choi HS, Cho SJ, Kim KS, Ha T-K (1995) Ab initio study of the complexation of benzene with ammonium cations. Chem Phys Lett 232:67–71CrossRefGoogle Scholar
  46. 46.
    Majumdar D, Leszczynski J (2007) Theoretical modeling of cation-π interactions in various environments: case study using benzene…ammonium and benzene…tetramethyl- ammonium ion interactions as model systems. Comput Lett 3:257–265. doi: 10.1163/157404007782913246 CrossRefGoogle Scholar
  47. 47.
    Meot-Ner M, Deakyne CA (1985) Unconventional ionic hydrogen bonds. 2. NH+···π. Complexes of onium ions with olefins and benzene derivatives. J Am Chem Soc 107:474–479. doi: 10.1021/ja00288a034 CrossRefGoogle Scholar
  48. 48.
    Pullman A, Berthier G, Savinelli R (2001) Components of the interaction energy of benzene with Na + and methylammonium cations. J Mol Struct (THEOCHEM) 537:163–172. doi: 10.1016/s0166-1280(00)00673-4 CrossRefGoogle Scholar
  49. 49.
    Pejov L (2002) A gradient-corrected density functional and MP2 study of phenol-ammonia and phenol-ammonia(+) hydrogen-bonded complexes. Chem Phys 285(2–3):177–193CrossRefGoogle Scholar
  50. 50.
    Tsuzuki S, Uchimaru T (2006) Magnitude and physical origin of intermolecular interactions of aromatic molecules: recent progress of computational studies. Curr Org Chem 10(7):745–762CrossRefGoogle Scholar
  51. 51.
    Wang YS, Chang HC, Jiang JC, Lin SH, Lee YT, Chang HC (1998) Structures and isomeric transitions of NH4 + (H2O)3–6: from single to double rings. J Am Chem Soc 120(34):8777–8788. doi: 10.1021/ja9802908 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ana A. Rodríguez-Sanz
    • 1
  • J. Carrazana-García
    • 1
  • Enrique M. Cabaleiro-Lago
    • 1
    Email author
  • Jesús Rodríguez-Otero
    • 2
  1. 1.Departamento de Química Física, Facultade de CienciasUniversidade de Santiago de CompostelaLugoSpain
  2. 2.Departamento de Química Física, Facultade de QuímicaUniversidade de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations