Skip to main content
Log in

A B3LYP and MP2(full) theoretical investigation into the strength of the C–NO2 bond upon the formation of the intermolecular hydrogen-bonding interaction between HF and the nitro group of nitrotriazole or its methyl derivatives

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The changes of bond dissociation energy (BDE) in the C–NO2 bond and nitro group charge upon the formation of the intermolecular hydrogen-bonding interaction between HF and the nitro group of 14 kinds of nitrotriazoles or methyl derivatives were investigated using the B3LYP and MP2(full) methods with the 6-311++G**, 6-311++G(2df,2p) and aug-cc-pVTZ basis sets. The strength of the C–NO2 bond was enhanced and the charge of nitro group turned more negative in complex in comparison with those in isolated nitrotriazole molecule. The increment of the C–NO2 bond dissociation energies correlated well with the intermolecular H-bonding interaction energies. Electron density shifts analyses showed that the electron density shifted toward the C–NO2 bond upon complex formation, leading to the strengthened C–NO2 bond and the possibly reduced explosive sensitivity.

C1-N2 bond turns strong upon H-bond formation, leading to a possibly reduced explosive sensitivity

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hu TP, Ren FD, Ren J (2009) J Mol Struct (THEOCHEM) 909:13–18

    Article  CAS  Google Scholar 

  2. Richard RM, Ball DW (2008) J Mol Struct (THEOCHEM) 851:284–293

    Article  CAS  Google Scholar 

  3. Qiu L, Gong XD, Zheng J, Xiao HM (2009) J Hazard Mater 166:931–938

    Article  CAS  Google Scholar 

  4. Wang GX, Gong XD, Liu Y, Xiao HM (2009) Spectrochim Acta Part A 74:569–574

    Article  Google Scholar 

  5. Liu Y, Gong XD, Wang LJ, Wang GX, Xiao HM (2011) J Phys Chem A 115:1754–1762

    Article  CAS  Google Scholar 

  6. Keshavarz MH, Pouretedal HR (2010) Propell Explos Pyrot 35:175–181

    Article  CAS  Google Scholar 

  7. Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2010) J Mol Model 16:895–901

    Article  Google Scholar 

  8. Zhao J, Xu DH, Cheng XL (2010) Struct Chem 21:1235–1240

    Article  CAS  Google Scholar 

  9. Li JS (2010) J Hazard Mater 174:728–733

    Article  CAS  Google Scholar 

  10. Li JS (2010) J Hazard Mater 180:768–772

    Article  CAS  Google Scholar 

  11. Atalar T, Jungová M, Zeman S (2009) J Energ Mater 27:200–216

    Article  CAS  Google Scholar 

  12. Cao CZ, Gao S (2007) J Phys Chem B 111:12399–12402

    Article  CAS  Google Scholar 

  13. Zhao J, Cheng XL, He B, Yang XD (2006) Struct Chem 17:501–507

    Article  CAS  Google Scholar 

  14. Song XS, Cheng XL, Yang XD, He B (2006) Propell Explos Pyrot 31:306–310

    Article  CAS  Google Scholar 

  15. Zhang CY, Shu YJ, Huang YG, Zhao XD, Dong HS (2005) J Phys Chem B 109:8978–8982

    Article  CAS  Google Scholar 

  16. Rice BM, Hare JJ (2002) J Phys Chem A 106:1770–1783

    Article  CAS  Google Scholar 

  17. Tan BS, Long XP, Peng RF, Li HB, Jin B, Chu SJ, Dong HS (2010) J Hazard Mater 183:908–912

    Article  CAS  Google Scholar 

  18. Delpuech A, Cherville J (1979) Propell Explos Pyrot 4:121–128

    Article  CAS  Google Scholar 

  19. Xiao HM (1994) Molecular orbital theory of nitro-compound. Publishing House of Defense Industry, Peking

    Google Scholar 

  20. Li JS (2010) J Phys Chem B 114:2198–2202

    Article  CAS  Google Scholar 

  21. Owens FJ, Jayasuriya K, Abrahmsen L, Politzer P (1985) Chem Phys Lett 116:434–438

    Article  CAS  Google Scholar 

  22. Ren WZ, Wang ZS (2004) Explosive theory and practice. China North Chemical Industries Corp Press, Nanjing

    Google Scholar 

  23. Yang L, Zhang J, Zhang T, Zhang J, Cui Y (2009) J Hazard Mater 164:962–967

    Article  CAS  Google Scholar 

  24. Buszewski B, Michel M, Cudziło S, Chyłek Z (2009) J Hazard Mater 164:1051–1058

    Article  CAS  Google Scholar 

  25. Wang HB, Shi WJ, Ren FD, Yang L, Wang JL (2012) Comp Theor Chem doi:10.1016/j.comptc.2012.06.018

  26. Xue H, Gao Y, Wamley BT, Shreeve JM (2005) Chem Mater 17:191–198

    Article  CAS  Google Scholar 

  27. Sikder AK, Geetha M, Sarwade DB, Agrrawal JP (2001) J Hazard Mater A 82:1–12

    Article  CAS  Google Scholar 

  28. Li XH, Zhang RZ, Zhang XZ (2011) Struct Chem 22:577–587

    Article  CAS  Google Scholar 

  29. Vereshchyagin LI, Pokatilov FA, Kizhnyaev VN (2008) Chem Heterocycl Compd 44:3–25

    Google Scholar 

  30. Sukhanov GT, Sukhanova AG, Lukin AY (2007) Chem Heterocycl Compd 43:786–792

    Article  CAS  Google Scholar 

  31. Sukhanova AG, Sakovich GV, Sukhanov GT (2008) Chem Heterocycl Compd 44:1368–1373

    Article  CAS  Google Scholar 

  32. Duddu R, Dave PR, Damavarapu R, Surapaneni R, Parrish D (2009) Synth Commun 39:4282–4288

    Article  CAS  Google Scholar 

  33. Darren LN, Michael AH, Herbert HH (2003) J Energ Mater 21:57–62

    Article  Google Scholar 

  34. Yi JH, Zhao FQ, Ren YH, Xu SY, Ma HX, Hu RZ (2010) J Therm Anal Calorim 100:623–627

    Article  CAS  Google Scholar 

  35. Ma HX, Song JR, Hu RZ, Zhai GH, Xu KZ, Wen ZY (2004) J Mol Struct (THEOCHEM) 678:217–222

    Article  CAS  Google Scholar 

  36. Song JR, Ma HX, Huang J, Hu RZ (2004) Thermochim Acta 416:43–46

    Article  CAS  Google Scholar 

  37. Wang YM, Chen C, Lin ST (1999) J Mol Struct (THEOCHEM) 460:79–102

    Article  CAS  Google Scholar 

  38. Yim WL, Liu ZF (2001) J Am Chem Soc 10:2243–2250

    Article  Google Scholar 

  39. Ravi P, Babu BK, Tewari SP (2012) J Mol Model. doi:10.1007/s00894-012-1515-z

  40. Pourmortazavi SM, Rahimi-Nasrabadi M, Kohsari I, Hajimirsadeghi SS (2011) J Therm Anal Calorim. doi:10.1007/s10973-011-1845-6

  41. Fabio R, Luigi B, Gustavo P, Aldo D (1994) Struct Chem 1:1–7

    Google Scholar 

  42. Fang G, Xu L, Hu X, Li X (2008) J Hazard Mater 160:51–55

    Article  CAS  Google Scholar 

  43. Zheng ZB, Wu RT, Li JK, Sun YF (2009) J Mol Struct 928(2009):78–84

    Article  CAS  Google Scholar 

  44. Richard RM, Ball DW (2007) J Mol Struct (THEOCHEM) 806:113–120

    Article  CAS  Google Scholar 

  45. Tanaka N, Tamezane T, Nishikiori H, Fujii T (2003) J Mol Struct (THEOCHEM) 631:21–28

    Article  CAS  Google Scholar 

  46. Novoa JJ, Mota F (2000) Chem Phys Lett 318:345–354

    Article  CAS  Google Scholar 

  47. Frisch MJ et al. (2003) Gaussian 03, Revision B.03, Gaussian Inc, Pittsburgh, PA

  48. Scheiner S, Kar T (2002) J Phys Chem A 106:1784–1789

    Article  CAS  Google Scholar 

  49. Duijineveldt FB, Duijineveldt-van de Rijdt JCMV, Lenthe JHV (1994) Chem Rev 94:1873–1885

    Article  Google Scholar 

  50. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  51. Macaveiu L, Göbel M, Klapötke TM, Murray JS, Politzer P (2010) Struct Chem 21:139–146

    Article  CAS  Google Scholar 

  52. Budyka MF, Zyubina TS, Zarkadis AK (2002) J Mol Struct (THEOCHEM) 594:113–125

    Article  CAS  Google Scholar 

  53. Jursic BS (1996) J Mol Struct (THEOCHEM) 366:103–108

    Article  CAS  Google Scholar 

  54. Brinck T, Haeberlin M, Jonsson M (1997) J Am Chem Soc 119:4239–4244

    Article  CAS  Google Scholar 

  55. Barckholtz C, Barckholtz TA, Hadad CM (1999) J Am Chem Soc 121:491–500

    Article  CAS  Google Scholar 

  56. Brill TB, James KJ (1993) Chem Rev 93:2667–2692

    Article  CAS  Google Scholar 

  57. Murray JS, Concha MC, Politzer P (2009) Mol Phys 107:89–97

    Article  CAS  Google Scholar 

  58. Politzer P, Lane P, Murray JS (2011) Cent Europ J Energ Mater 8:39–52

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-jing Shi or Fu-de Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, BH., Shi, Wj., Ren, Fd. et al. A B3LYP and MP2(full) theoretical investigation into the strength of the C–NO2 bond upon the formation of the intermolecular hydrogen-bonding interaction between HF and the nitro group of nitrotriazole or its methyl derivatives. J Mol Model 19, 511–519 (2013). https://doi.org/10.1007/s00894-012-1574-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1574-1

Keywords

Navigation