Advertisement

Journal of Molecular Modeling

, Volume 19, Issue 5, pp 1981–1984 | Cite as

Role of gold in a complex cascade reaction involving two electrocyclization steps

  • Jason G. Harrison
  • Dean J. TantilloEmail author
Original Paper
  • 251 Downloads

Abstract

Quantum chemical computations (B3LYP/LACVP**) were applied to assess the impact of Au(I) complexation on activation barriers for sequential electrocyclization reactions (one a 1,2-dihydroazete ring-opening and another a pentadienyl cation ring-closure) proposed to occur during a complex reaction cascade that converts alkynes and imines to cyclopentenimines.

Figure

Gold in a complex cascade reaction

Keywords

Catalysis Cation Gold Electrocyclization Nazarov 

Notes

Acknowledgments

We gratefully acknowledge the University of California–Davis, the American Chemical Society’s Petroleum Research Fund, the National Science Foundation’s Partnership for Advanced Computational Infrastructure (Pittsburgh Supercomputer Center), and the United States Department of Education (GAANN fellowship to JGH) for support. We also gratefully acknowledge Matthew Siebert (Texas Tech) and Osvaldo Gutierrez (UC Davis) for helpful discussions.

Supplementary material

894_2012_1558_MOESM1_ESM.pdf (804 kb)
ESM 1 Additional details on computations, including energies and coordinates for all minima and transition state structures, IRC plots, and full Gaussian reference. (PDF 804 kb)

References

  1. 1.
    Hashmi ASK (2007) Chem Rev 107:3180–3211CrossRefGoogle Scholar
  2. 2.
    Hashmi ASK (2008) Angew Chem Int Ed Engl 47:6754–6756CrossRefGoogle Scholar
  3. 3.
    Hashmi ASK, Hutchings G (2006) Angew Chem Int Ed Engl 45:7896–7936CrossRefGoogle Scholar
  4. 4.
    Hashmi ASK, Rudolph M (2008) Chem Soc Rev 37:1766–1775CrossRefGoogle Scholar
  5. 5.
    Hashmi ASK, Weyrauch J, Rudolph M, Kurpejović E (2004) Angew Chem Int Ed 43:6545–6547CrossRefGoogle Scholar
  6. 6.
    Hashmi ASK, Stephen K, Schuster AM, Rominger F (2009) Angew Chem Int Ed 48:8247–8249CrossRefGoogle Scholar
  7. 7.
    Hutchings GJ, Brust M, Schmidbaur H (2008) Chem Rev 37:1759–1765CrossRefGoogle Scholar
  8. 8.
    Lemiere G, Gandon V, Cariou K, Fukuyama T, Dhimane AL, Fensterbank L, Malacria M (2007) Org Lett 9:2207–2209CrossRefGoogle Scholar
  9. 9.
    Li Z, Brouwer C, He C (2008) Chem Rev 108:3239–3265CrossRefGoogle Scholar
  10. 10.
    Marion N, Nolan SP (2008) Chem Rev 37:1776–1782CrossRefGoogle Scholar
  11. 11.
    Sniekus V, Scharl H (2006) Synfacts 8:0765–0765Google Scholar
  12. 12.
    Grirrane A, Corma A, García H (2008) Science 322:1661–1664CrossRefGoogle Scholar
  13. 13.
    de Haro T, Nevado C (2010) Adv Syn & Cat 352:2767–2772CrossRefGoogle Scholar
  14. 14.
    Ye L, He W, Zhang L (2010) J Am Chem Soc 132:8550–8551CrossRefGoogle Scholar
  15. 15.
    Ye L, Cui L, Zhang G, Zhang L (2010) J Am Chem Soc 132:3258–3259CrossRefGoogle Scholar
  16. 16.
    Blac A, Tenbrink K, Weihal J, Pale P (2009) J Org Chem 74:5342–5348CrossRefGoogle Scholar
  17. 17.
    Faza ON, Rodríguez RÁ, López CS (2011) Theor Chem Acc 128:647–661CrossRefGoogle Scholar
  18. 18.
    Dub P, Poli R (2010) J Am Chem Soc 132:13799–13812CrossRefGoogle Scholar
  19. 19.
    Fang R, Su C, Zhao C, Phillips DL (2009) Organomet 28:741–748CrossRefGoogle Scholar
  20. 20.
    Zhu R, Zhang D, Guo J, Mu J, Duan C, Liu C (2010) J Phys Chem A 114:4689–4696CrossRefGoogle Scholar
  21. 21.
    Zhang J, Shen W, Li L, Li M (2009) Organomet 28:3129–3139CrossRefGoogle Scholar
  22. 22.
    Kovacs G, Ujaque G, Lledos A (2008) J Am Chem Soc 130:853–864CrossRefGoogle Scholar
  23. 23.
    Xia Y, Huang G (2010) J Org Chem 75:7842–7854CrossRefGoogle Scholar
  24. 24.
    Suarez-Pantiga S, Rubio E, Alvarez-Rua C, Gonzalez JM (2009) Org Lett 11:13–16CrossRefGoogle Scholar
  25. 25.
    Woodward RB, Hoffmann R (1965) J Am Chem Soc 87:395–397CrossRefGoogle Scholar
  26. 26.
    Kirmse W, Rondan NG, Houk KN (1984) J Am Chem Soc 106:7989–7991CrossRefGoogle Scholar
  27. 27.
    Smith DA, Ulmer CW (1997) J Org Chem 62:5110–5115CrossRefGoogle Scholar
  28. 28.
    Smith DA, Ulmer CW (1995) J Mol Graph 13:283–286CrossRefGoogle Scholar
  29. 29.
    Smith DA, Ulmer CW (1991) Tetrahedron Lett 3:725–728CrossRefGoogle Scholar
  30. 30.
    Frontier AJ, Collison C (2005) Tetrahedron 61:7577–7606CrossRefGoogle Scholar
  31. 31.
    Lin C, Teng T, Tsai C, Liao H, Liu R (2008) J Am Chem Soc 130:16417–16423CrossRefGoogle Scholar
  32. 32.
    Faza ON, López CS, Álvarez R, Lera AR (2006) J Am Chem Soc 128:2434–2437CrossRefGoogle Scholar
  33. 33.
    Shi X, Gorin DJ, Toste FD (2005) J Am Chem Soc 127:5802–5803CrossRefGoogle Scholar
  34. 34.
    Davis RL, Tantillo DJ (2010) J Curr Org Chem 14:1561–1577CrossRefGoogle Scholar
  35. 35.
    Gaussian 03, Revision D.01, M. J. Frisch et al., Gaussian, Inc., Wallingford CT, 2004 & Gaussian 09, Revision B.01, M. J. Frisch et al., Gaussian, Inc., Wallingford CT, 2010; full references can be found in the Supporting information.Google Scholar
  36. 36.
    Becke AD (1993) J Chem Phys 98:1372–1377CrossRefGoogle Scholar
  37. 37.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  38. 38.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  39. 39.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627CrossRefGoogle Scholar
  40. 40.
    Yang Y, Weaver MN, Merz KM (2009) J Phys Chem A 113:9843–9851CrossRefGoogle Scholar
  41. 41.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283CrossRefGoogle Scholar
  42. 42.
    Tirado-Rives J, Jorgensen WL (2008) J Chem Theory Comput 4:297–306CrossRefGoogle Scholar
  43. 43.
    Yu A, Liu Y, Wang Y (2007) Chem Phys Lett 436:276–279CrossRefGoogle Scholar
  44. 44.
    Krol M, Wrona M, Page CS, Bates PA (2006) J Chem Theory Comput 2:1520–1529CrossRefGoogle Scholar
  45. 45.
    Takano Y, Houk KN (2005) J Chem Theory Comput 1:70–77CrossRefGoogle Scholar
  46. 46.
    Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527CrossRefGoogle Scholar
  47. 47.
    Fukui K (1981) Acc Chem Res 14:363–368CrossRefGoogle Scholar
  48. 48.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  49. 49.
    Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157–167CrossRefGoogle Scholar
  50. 50.
    Müller N, Falk A (2004) Ball & Stick 4.0a12, molecular graphics software for MacOS. Johannes Kepler University LinzGoogle Scholar
  51. 51.
    Siebert MR, Yudin AK, Tantillo DJ (2008) Org Lett 10:57–60Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of California–DavisDavisUSA

Personalised recommendations