Advertisement

Journal of Molecular Modeling

, Volume 19, Issue 5, pp 1959–1965 | Cite as

Dissociation quenching using exceptional points

  • R. Lefebvre
  • O. AtabekEmail author
Original Paper

Abstract

We examine a short way to reach an exceptional point that corresponds to a coalescence of two resonance energies. The application concerns the photodissociation of the Na2 molecule exposed to a laser field. In this case, the resonances can be correlated with the field-free vibrational states of the diatomic species. The resonances are due to the field-induced coupling with the continuum of a repulsive potential. We also draw attention to a new kind of exceptional point involving a resonance originating from a vibrational state coalescing with a shape-type resonance of the repulsive potential. A laser control scenario, aiming at the adiabatic transport from this field-free decaying state to a stable field-free vibrational state, is discussed in terms of field-induced dissociation quenching.

Figure

Laser-controlled Dissociation Quenching mechanism in Na2 using an Exceptional Point resulting from the merging of a shape-type resonance (R 8) and a Feshbach one originating from a vibrational bound state (v=0). The population transfer process is indicated by the blue arrow of the left panel. The laser-controlled energy trajectory from R 8 (decaying state) to v=0 (stable state) is displayed in the middle panel, while the survival probability is given in the right panel. An efficiency of about 25 % is reached for the quenching control.

Keywords

Photodissociation Resonances Exceptional points Population transfer Laser control Dissociation quenching Floquet formalism 

Notes

Acknowledgments

The authors gratefully acknowledge fruitful discussions with Dr. Amine Jaouadi. R. L. thanks Pr. I. Ortega for his hospitality at the Instituto de Ciencias Fisicas (UNAM), Cuernavaca, Mexico, where part of this work was done. This research is supported partially by France-Canada CFQCU (contract number 2010–19), from the EU (Project ITN-2010-264951, CORINF), and the joint NSF (USA)-–ANR (France) FRAMOLSENT project.

References

  1. 1.
    Taylor R (1972) Scattering theory. Wiley, New YorkGoogle Scholar
  2. 2.
    Kato T (1966) Perturbation theory of linear operators. Springer, BerlinGoogle Scholar
  3. 3.
    Heiss WD (1999) Eur Phys J D 17:1CrossRefGoogle Scholar
  4. 4.
    Moiseyev N (2001) Non-Hermitian quantum mechanics. Cambridge University Press, CambridgeGoogle Scholar
  5. 5.
    Heiss WD (2004) Czech J Phys 54(54):1091CrossRefGoogle Scholar
  6. 6.
    Hernández E, Jáuregui A, Mondragón A (2006) J Phys A Math Gen 39:10087CrossRefGoogle Scholar
  7. 7.
    Dembowski C, Gräf H-D, Harney HL, Heine A, Heiss WD, Rehfeld H, Richter A (2001) Phys Rev Lett 86:787CrossRefGoogle Scholar
  8. 8.
    Cartarius H, Main J, Wunner G (2007) Phys Rev Lett 99:173003CrossRefGoogle Scholar
  9. 9.
    Narevicius E, Moiseyev N (2000) Phys Rev Lett 84:1681CrossRefGoogle Scholar
  10. 10.
    Atabek O, Lefebvre R, Nguyen-Dang TT (2003) In: Le Bris C (ed) Handbook of numerical analysis, vol X. Elsevier, New YorkGoogle Scholar
  11. 11.
    Lefebvre R, Atabek O, Sindelka M, Moiseyev N (2009) Phys Rev Lett 103:123003CrossRefGoogle Scholar
  12. 12.
    Atabek O, Lefebvre R, Lepers M, Jaouadi A, Dulieu O, Kokoouline V (2011) Phys Rev Lett 106:173002CrossRefGoogle Scholar
  13. 13.
    Hernández E, Jáuregui A, Mondragón A (2005) Phys Rev E 72:026221CrossRefGoogle Scholar
  14. 14.
    Fox L, Goodwin ET (1953) Philos Trans R Soc 245:501CrossRefGoogle Scholar
  15. 15.
    Moiseyev N (1998) Phys Rep 302:212CrossRefGoogle Scholar
  16. 16.
    Chrysos M, Atabek O, Lefebvre R (1993) Phys Rev A 48:3845CrossRefGoogle Scholar
  17. 17.
    Magnier S, Millié P, Dulieu O, Masnou-Seeuws F (1993) J Chem Phys 98:7113CrossRefGoogle Scholar
  18. 18.
    Aymar M, Dulieu O (2005) J Chem Phys 122:204302CrossRefGoogle Scholar
  19. 19.
    Atabek O, Lefebvre R, Jacon M (1982) J Phys B At Mol Opt Phys 15:2689CrossRefGoogle Scholar
  20. 20.
    Humblet J, Rosenfeld L (1961) Nucl Phys 26:529CrossRefGoogle Scholar
  21. 21.
    Siegert AFJ (1939) Phys Rev 56:750CrossRefGoogle Scholar
  22. 22.
    Fleischer A, Moiseyev N (2005) Phys Rev A 72:032103CrossRefGoogle Scholar
  23. 23.
    Atabek O, Lefebvre R, Lefebvre C, Nguyen-Dang TT (2008) Phys Rev A 77:043413CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Institut des Sciences Moléculaires d’Orsay, CNRSUniversité Paris-SudOrsayFrance
  2. 2.U.F.R. de Physique Fondamentale et AppliquéeUniversité Pierre et Marie CurieParisFrance

Personalised recommendations