Skip to main content
Log in

Rectifying behavior of charge transfer complexes of tetrakis(dimethylamino)ethene with acceptor molecules: a theoretical study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The effect of electric field induced electron transfer on the rectification properties of molecular rectifiers based on charge transfer complexes of tetrakis(dimethylamino)ethane (TDAE) with acceptor molecules was explored. The current–voltage curves and the rectification ratios (RR) for two different molecular rectifiers were obtained using a direct ab initio method at M06/LACVP(d) level of theory in the range from −2 to +2 V. The highest RR of 25.7 was determined for the complex of TDAE with 2-nitropyrene-4,5,9,10-tetraone at 0.5 V (D1), while another rectifier [complex of TDAE with 2,7-dimethyl nitropyrene-4,5,9,10-tetraone (D2)] showed a maximum RR of only 2.9 at 0.3 V. The electric field induced electron transfer occurring in D1 creates a one-way conducting channel consisting of two SOMOs involving the entire D1 complex. In the case of D2, no electron transfer occurs at the applied bias voltages due to the relatively high energy difference between HOMO and LUMO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kubatkin S, Danilov A, Hjort M, Cornil J, Brédas JL, Stuhr-Hansen N, Hedegård P, Bjórnholm T (2003) Nature 425:698–701

    Article  CAS  Google Scholar 

  2. Yu LH, Natelson D (2004) Nano Lett 4:79–83

    Article  CAS  Google Scholar 

  3. Dadosh T, Gordin Y, Krahne R, Khivrich I, Mahalu D, Frydman V, Sperling J, Yacoby A, Bar-Joseph I (2005) Nature 436:667–680

    Google Scholar 

  4. Song H, Kim Y, Jang YH, Jeong H, Reed MA, Lee T (2009) Nature 462:1039–1043

    Article  CAS  Google Scholar 

  5. Tour JM (2000) Acc Chem Res 33:791–804

    Article  CAS  Google Scholar 

  6. Carroll RL, Gorman CB (2002) Angew Chem Int Ed 41:4378–4400

    Article  Google Scholar 

  7. Seminario JM, Zacarias AG, Tour JM (2000) J Am Chem Soc 122:3015–3020

    Article  CAS  Google Scholar 

  8. Brandbyge M, Mozos JL, Ordejón P, Taylor J, Stokbro K (2002) Phys Rev B 65:165401

    Article  Google Scholar 

  9. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) J Phys Condens Matter 14:2745–2779

    Article  CAS  Google Scholar 

  10. Taylor J, Guo H, Wang J (2001) Phys Rev B 63:245407

    Article  Google Scholar 

  11. Aviram A, Ratner MA (1974) Chem Phys Lett 29:277–283

    Article  CAS  Google Scholar 

  12. Mujica V, Ratner MA, Nitzan A (2002) Chem Phys 281:147–150

    Article  CAS  Google Scholar 

  13. Stokbro K, Taylor J, Brandbyge M (2003) J Am Chem Soc 125:3674–3675

    Article  CAS  Google Scholar 

  14. Ng MK, Lee DC, Yu LP (2002) J Am Chem Soc 124:11862–11863

    Article  CAS  Google Scholar 

  15. Ng MK, Yu LP (2002) Angew Chem Int Ed Engl 41:3598–3601

    Article  CAS  Google Scholar 

  16. Elbing M, Ochs R, Koentopp M, Fischer M, Hanisch CV, Weigend F, Evers F, Weber HB, Mayor M (2005) Proc Natl Acad Sci USA 102:8815–8820

    Article  CAS  Google Scholar 

  17. Metzger RM, Chen B, Hopfner U, Lakshmikantham MV, Vuillaume D, Kawai T, Wu X, Tachibana H, Hughes TV, Sakurai H, Baldwin W, Hosch C, Cava MP, Brehmer L, Ashwell GJ (1997) J Am Chem Soc 119:10455–10466

    Article  CAS  Google Scholar 

  18. Martinand AS, Sambles JR (1996) Nanotechnology 7:401–405

    Article  Google Scholar 

  19. Metzger RM (1999) Acc Chem Res 32:950–957

    Article  CAS  Google Scholar 

  20. Metzger RM, Xuand T, Peterson IR (2001) J Phys Chem B 105:7280–7290

    Article  CAS  Google Scholar 

  21. Ashwell GJ, Robinson BJ, Amiri MA, Locatelli D, Quici S, Roberto D (2005) J Mater Chem 15:4203–4205

    Article  CAS  Google Scholar 

  22. Ashwell GJ, Mohib A, Miller JR (2005) J Mater Chem 15:1160–1166

    Article  CAS  Google Scholar 

  23. Ashwell GJ, Chwialkowska A, High LRH (2004) J Mater Chem 14:2848–2851

    Article  CAS  Google Scholar 

  24. Ashwell GJ, Chwialkowska A, High LRH (2004) J Mater Chem 14:2389–2394

    Article  CAS  Google Scholar 

  25. Ashwell GJ, Hamilton R, High LRH (2003) J Mater Chem 13:1501–1503

    Article  CAS  Google Scholar 

  26. Jiang P, Morales GM, Youand W, Yu LP (2004) Angew Chem Int Ed 43:4471–4475

    Article  CAS  Google Scholar 

  27. Ashwell GJ, Ewington J, Robinson BJ (2006) Chem Commun 6:618–620

    Article  Google Scholar 

  28. Metzger RM, Baldwin JW, Shumate WJ, Peterson IR, Mani P, Mankey GJ, Morris T, Szulczewski G, Bosi S, Prato M, Comito V, Rubin Y (2003) J Phys Chem B 107:1021–1027

    Article  CAS  Google Scholar 

  29. Honiuc A, Jaiswal A, Gong A, Ashworth K, Spangler CW, Peterson IR, Dalton LR, Metzger RM (2005) J Phys Chem B 109:857–871

    Article  Google Scholar 

  30. Metzger RM (2003) Chem Rev 103:3803–3834

    Article  CAS  Google Scholar 

  31. Shankara Gayathri S, Patnaik A (2006) Chem Commun 18:1977–1979

  32. García M, Guadarrama P, Ramos E, Fomine S (2011) Synthetic Met 21–22:2390–2396

    Article  Google Scholar 

  33. Frisch MJ et al (2010) Gaussian 09, Revision B.01. Gaussian, Wallingford

    Google Scholar 

  34. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101

    Article  Google Scholar 

  35. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  36. Bock H, Borrmann H, Havlas Z, Oberhammer H, Ruppert K, Simon A (1991) Angew Chem Int Ed Engl 30:1678–1681

    Article  Google Scholar 

  37. Tanaka K, Zakhidov AA, Yoshizawa K, Okahara K, Yamabe T (1993) Phys Rev B 47:7554–7559

    Article  CAS  Google Scholar 

  38. Ortiz DO, Seminario JM (2007) J Chem Phys 127:111106

    Article  Google Scholar 

  39. Seminario JM, Zacarias AG, Tour JM (1999) J Phys Chem A 103:7883–7887

    Article  CAS  Google Scholar 

  40. Marquardt R, Balster A, Sander W, Kraka E, Cremer D, Radziszewiski JG (1998) Angew Chem 37:955–958

    Article  CAS  Google Scholar 

  41. Gräfenstein J, Hjerpe AM, Kraka E, Cremer D (2000) J Phys Chem A 104:1748–1761

    Article  Google Scholar 

  42. Bendikov M, Duong HM, Starkey K, Houk KN, Carter EA, Wudl F (2004) J Am Chem Soc 126:7416–7417

    Article  CAS  Google Scholar 

  43. Gräfenstein J, Kraka E, Filatov M, Cremer D (2002) Int J Mol Sci 3:360–394

    Article  Google Scholar 

  44. Kost D, Frailich M (1997) J Mol Struct (THEOCHEM) 398–399:265–274

    Article  Google Scholar 

Download references

Acknowledgment

This research was carried out with the support of Grant 151277 from National Council for Science and Technology (CONACyT)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serguei Fomine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fomine, S. Rectifying behavior of charge transfer complexes of tetrakis(dimethylamino)ethene with acceptor molecules: a theoretical study. J Mol Model 19, 65–71 (2013). https://doi.org/10.1007/s00894-012-1523-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1523-z

Keywords

Navigation