Skip to main content
Log in

Explaining reaction mechanisms using the dual descriptor: a complementary tool to the molecular electrostatic potential

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The intrinsic reactivity of cyanide when interacting with a silver cation was rationalized using the dual descriptor (DD) as a complement to the molecular electrostatic potential (MEP) in order to predict interactions at the local level. It was found that DD accurately explains covalent interactions that cannot be explained by MEP, which focuses on essentially ionic interactions. This allowed the rationalization of the reaction mechanism that yields silver cyanide in the gas phase. Other similar reaction mechanisms involving a silver cation interacting with water, ammonia, and thiosulfate were also explained by the combination of MEP and DD. This analysis provides another example of the usefulness of DD as a tool for gaining a deeper understanding of any reaction mechanism that is mainly governed by covalent interactions.

The dual descriptor adapted to molecular symmetry reveals which atom of cyanide ligand, carbon or nitrogen, will react more favorably with a silver atom in the silver cyanide complex

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Politzer P, Murray JS (2002) Theor Chem Acc 108:134–142

    Article  CAS  Google Scholar 

  2. Murray JS, Politzer P (2011) The electrostatic potential: an overview. WIREs Comput Mol Sci 1:153–163

    Article  CAS  Google Scholar 

  3. Hohenberg P, Kohn W (1964) Phys Rev B 136:864–871

    Article  Google Scholar 

  4. Kohn W, Sham LJ (1965) Phys Rev A 140:1133–1138

    Google Scholar 

  5. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1873

    Article  CAS  Google Scholar 

  6. Chermette H (1999) J Comput Chem 20:129–154

    Article  CAS  Google Scholar 

  7. Morell C, Grand A, Toro-Labbé A (2005) J Phys Chem A 109:205–212

    Article  CAS  Google Scholar 

  8. Morell C, Grand A, Toro-Labbé A (2006) Chem Phys Lett 425:342–346

    Article  CAS  Google Scholar 

  9. Toro-Labbé A (2007) Theoretical aspects of chemical reactivity, vol 19. Elsevier, Amsterdam

    Google Scholar 

  10. Ayers PW, Morell C, De Proft F, Geerlings P (2007) Chem Eur J 13:8240–8247

    Article  CAS  Google Scholar 

  11. Morell C, Ayers PW, Grand A, Gutiérrez-Oliva S, Toro-Labbé A (2008) Phys Chem Chem Phys 10:7239–7246

    Article  CAS  Google Scholar 

  12. Morell C, Hocquet A, Grand A, Jamart-Grégoire B (2008) THEOCHEM 849:46–51

    Article  CAS  Google Scholar 

  13. Cárdenas C, Rabi N, Ayers PW, Morell C, Jaramillo P, Fuentealba P (2009) J Phys Chem A 113:8660–8667

    Article  Google Scholar 

  14. Fuentealba P, Parr RG (1991) J Chem Phys 94:5559–5564

    Article  CAS  Google Scholar 

  15. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York, pp 95–97

    Google Scholar 

  16. Flores-Moreno R (2010) J Chem Theory Comput 6:48–54

    Article  CAS  Google Scholar 

  17. Martínez J (2009) Chem Phys Lett 478:310–322

    Article  Google Scholar 

  18. Martínez JI, Moncada JL, Larenas JM (2010) J Mol Model 16:1825–1832

    Article  Google Scholar 

  19. Schlegel HB (1982) J Comput Chem 3:214–218

    Article  CAS  Google Scholar 

  20. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  21. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  22. Becke AD (1993) J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  23. Lee CL, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  24. Jeffrey Hay P, Wadt WR (1985) J Chem Phys 82:270–283

    Article  Google Scholar 

  25. Jeffrey Hay P, Wadt WR (1985) J Chem Phys 82:299–310

    Article  Google Scholar 

  26. Frisch MJ et al (2010) Gaussian 09, revision B.1. Gaussian, Inc., Wallingford

    Google Scholar 

  27. Pearson RG (1963) J Am Chem Soc 85:3533–3543

    Article  CAS  Google Scholar 

  28. Pearson RG, Songstad J (1967) J Am Chem Soc 89:1827–1836

    Article  CAS  Google Scholar 

  29. Pearson RG (1968) J Chem Educ 45:581–587

    Article  CAS  Google Scholar 

  30. Pearson RG (1987) J Chem Educ 64:561–567

    Article  CAS  Google Scholar 

  31. Gázquez JL (1997) J Phys Chem A 26:4657–4659

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially financed by funding from the Vice-Rector of Research and Development to promote and support research in the UPV university community, so the author wishes to thank the financial support afforded by Fondo VRID no. 000012A26 (Fondo Vicerrectoría de Investigación y Desarrollo) from UPV and FONDECYT grant no. 11100070 (A Project for Research Initiation), which provided computational equipment and software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Ignacio Martínez-Araya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Araya, J.I. Explaining reaction mechanisms using the dual descriptor: a complementary tool to the molecular electrostatic potential. J Mol Model 19, 2715–2722 (2013). https://doi.org/10.1007/s00894-012-1520-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1520-2

Keywords

Navigation