Skip to main content
Log in

Structural insights into interacting mechanism of ID1 protein with an antagonist ID1/3-PA7 and agonist ETS-1 in treatment of ovarian cancer: molecular docking and dynamics studies

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Among the many abnormally expressed proteins in ovarian cancer, the prominent cancer in women, ID1 (inhibitors of DNA binding protein 1) is a potential one among other several targets. Interaction of ID1 with ETS-1 (transcriptional activator of p16INK4a) suppresses the transcription of p16INK4a and causes abnormal cell proliferation. A peptide aptamer (ID1/3-PA7) has been designed to prevent this interaction and thereby leading to the transcription of p16INK4a. However, the structural basis behind the molecular interaction of ID1 with ETS-1 (agonist) and ID1/3-PA7 (antagonist) is poorly understood. In order to understand this structural recognition and their interaction mechanism, in silico methods were used. From this interaction analysis, the residues of ETS-1 involved in interaction with the p16INK4a promoter were found to be targeted by ID1. Subsequently, ETS-1 binding residues of ID1 were found to be targeted by its aptamer- ID1/3-PA7. These results suggest that both ETS-1 and ID1/3-PA7 binds at the same region harbored by the residues-H97, D100, R103, D104, L107, A144, C145, D149, D150 and C154 of ID1. All these observations correlate with the experimental reports, suggesting that the identified residues might play a crucial role in promulgating the oncogenic effects of ID1. In silico alanine scanning mutagenesis also confirms the role of identified hot spot residues in p16INK4a regulation. Finally, the molecular dynamic simulation studies reveal the prolonged stability of the aforementioned interacting complexes. The obtained results throw light on the structure and residues of ID1 involved in transcriptional regulation of p16INK4a.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P (2001) Estimating the world cancer burden: Globocan 2000. Int J Cancer 94(2):153–156. doi:10.1002/ijc.1440

    Article  CAS  Google Scholar 

  2. Ohtani N, Zebedee Z, Huot TJ, Stinson JA, Sugimoto M, Ohashi Y, Sharrocks AD, Peters G, Hara E (2001) Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature 409(6823):1067–1070. doi:10.1038/35059131

    Article  CAS  Google Scholar 

  3. Benezra R, Davis RL, Lockshon D, Turner DL, Weintraub H (1990) The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61(1):49–59

    Article  CAS  Google Scholar 

  4. Biggs J, Murphy EV, Israel MA (1992) A human Id-like helix-loop-helix protein expressed during early development. Proc Natl Acad Sci U S A 89(4):1512–1516

    Article  CAS  Google Scholar 

  5. Christy BA, Sanders LK, Lau LF, Copeland NG, Jenkins NA, Nathans D (1991) An Id-related helix-loop-helix protein encoded by a growth factor-inducible gene. Proc Natl Acad Sci U S A 88(5):1815–1819

    Article  CAS  Google Scholar 

  6. Riechmann V, van Cruchten I, Sablitzky F (1994) The expression pattern of Id4, a novel dominant negative helix-loop-helix protein, is distinct from Id1, Id2 and Id3. Nucleic Acids Res 22(5):749–755. doi:10.1093/nar/22.5.749

    Article  CAS  Google Scholar 

  7. Sun XH, Copeland NG, Jenkins NA, Baltimore D (1991) Id proteins Id1 and Id2 selectively inhibit DNA binding by one class of helix-loop-helix proteins. Mol Cell Biol 11(11):5603–5611

    CAS  Google Scholar 

  8. Davis RL, Cheng PF, Lassar AB, Weintraub H (1990) The MyoD DNA binding domain contains a recognition code for muscle-specific gene activation. Cell 60(5):733–746

    Article  CAS  Google Scholar 

  9. Ellenberger T, Fass D, Arnaud M, Harrison SC (1994) Crystal structure of transcription factor E47: E-box recognition by a basic region helix-loop-helix dimer. Genes Dev 8(8):970–980. doi:10.1101/gad.8.8.970

    Article  CAS  Google Scholar 

  10. Ma PC, Rould MA, Weintraub H, Pabo CO (1994) Crystal structure of MyoD bHLH domain-DNA complex: perspectives on DNA recognition and implications for transcriptional activation. Cell 77(3):451–459

    Article  CAS  Google Scholar 

  11. Murre C, McCaw PS, Baltimore D (1989) A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56(5):777–783

    Article  CAS  Google Scholar 

  12. Henthorn P, Kiledjian M, Kadesch T (1990) Two distinct transcription factors that bind the immunoglobulin enhancer microE5/kappa 2 motif. Science 247(4941):467–470. doi:10.1126/science.2105528

    Article  CAS  Google Scholar 

  13. Hu JS, Olson EN, Kingston RE (1992) HEB, a helix-loop-helix protein related to E2A and ITF2 that can modulate the DNA-binding ability of myogenic regulatory factors. Mol Cell Biol 12(3):1031–1042

    CAS  Google Scholar 

  14. Massari ME, Murre C (2000) Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol 20(2):429–440

    Article  CAS  Google Scholar 

  15. Murre C, McCaw PS, Vaessin H, Caudy M, Jan LY, Jan YN, Cabrera CV, Buskin JN, Hauschka SD, Lassar AB et al. (1989) Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58(3):537–544

    Article  CAS  Google Scholar 

  16. Skerjanc IS, Truong J, Filion P, McBurney MW (1996) A splice variant of the ITF-2 transcript encodes a transcription factor that inhibits MyoD activity. J Biol Chem 271(7):3555–3561. doi:10.1074/jbc.271.7.3555

    Article  CAS  Google Scholar 

  17. Zhang Y, Babin J, Feldhaus AL, Singh H, Sharp PA, Bina M (1991) HTF4: a new human helix-loop-helix protein. Nucleic Acids Res 19(16):4555. doi:10.1093/nar/19.16.4555

    Article  CAS  Google Scholar 

  18. Lassar AB, Davis RL, Wright WE, Kadesch T, Murre C, Voronova A, Baltimore D, Weintraub H (1991) Functional activity of myogenic HLH proteins requires hetero-oligomerization with E12/E47-like proteins in vivo. Cell 66(2):305–315. doi:10.1016/0092-8674(91)90620-E

    Article  CAS  Google Scholar 

  19. srael MA, Hernandez MC, Florio M, Andres-Barquin PJ, Mantani A, Carter JH, Julin CM (1999) Id gene expression as a key mediator of tumor cell biology. Cancer Res 59(7 Suppl):1726s–1730s

    CAS  Google Scholar 

  20. Norton JD, Atherton GT (1998) Coupling of cell growth control and apoptosis functions of Id proteins. Mol Cell Biol 18(4):2371–2381

    CAS  Google Scholar 

  21. Norton JD (2000) ID helix-loop-helix proteins in cell growth, differentiation and tumorigenesis. J Cell Sci 113(Pt 22):3897–3905

    CAS  Google Scholar 

  22. Wibley J, Deed R, Jasiok M, Douglas K, Norton J (1996) A homology model of the Id-3 helix-loop-helix domain as a basis for structure-function predictions. Biochim Biophys Acta 1294(2):138–146

    Article  Google Scholar 

  23. Kiewitz SD, Cabrele C (2005) Synthesis and conformational properties of protein fragments based on the Id family of DNA-binding and cell-differentiation inhibitors. Biopolymers 80(6):762–774. doi:10.1002/bip.20287

    Article  CAS  Google Scholar 

  24. Garrell J, Modolell J (1990) The Drosophila extramacrochaetae locus, an antagonist of proneural genes that, like these genes, encodes a helix-loop-helix protein. Cell 61(1):39–48

    Article  CAS  Google Scholar 

  25. Li R, Pei H, Watson DK (2000) Regulation of Ets function by protein - protein interactions. Oncogene 19(55):6514–6523. doi:10.1038/sj.onc.1204035

    Article  CAS  Google Scholar 

  26. Perk J, Iavarone A, Benezra R (2005) Id family of helix-loop-helix proteins in cancer. Nat Rev Cancer 5(8):603–614. doi:10.1038/nrc1673

    Article  CAS  Google Scholar 

  27. Mern DS, Hasskarl J, Burwinkel B (2010) Inhibition of Id proteins by a peptide aptamer induces cell-cycle arrest and apoptosis in ovarian cancer cells. Br J Cancer 103(8):1237–1244. doi:10.1038/sj.bjc.6605897

    Article  CAS  Google Scholar 

  28. Mern DS, Hoppe-Seyler K, Hoppe-Seyler F, Hasskarl J, Burwinkel B (2010) Targeting Id1 and Id3 by a specific peptide aptamer induces E-box promoter activity, cell cycle arrest, and apoptosis in breast cancer cells. Breast Cancer Res Treat 124(3):623–633. doi:10.1007/s10549-010-0810-6

    Article  CAS  Google Scholar 

  29. Lin CQ, Singh J, Murata K, Itahana Y, Parrinello S, Liang SH, Gillett CE, Campisi J, Desprez PY (2000) A role for Id-1 in the aggressive phenotype and steroid hormone response of human breast cancer cells. Cancer Res 60(5):1332–1340

    CAS  Google Scholar 

  30. Schindl M, Oberhuber G, Obermair A, Schoppmann SF, Karner B, Birner P (2001) Overexpression of Id-1 protein is a marker for unfavorable prognosis in early-stage cervical cancer. Cancer Res 61(15):5703–5706

    CAS  Google Scholar 

  31. Langlands K, Down GA, Kealey T (2000) Id proteins are dynamically expressed in normal epidermis and dysregulated in squamous cell carcinoma. Cancer Res 60(21):5929–5933

    CAS  Google Scholar 

  32. Maruyama H, Kleeff J, Wildi S, Friess H, Buchler MW, Israel MA, Korc M (1999) Id-1 and Id-2 are overexpressed in pancreatic cancer and in dysplastic lesions in chronic pancreatitis. Am J Pathol 155(3):815–822. doi:10.1016/S0002-9440(10)65180-2

    Article  CAS  Google Scholar 

  33. Ouyang XS, Wang X, Lee DT, Tsao SW, Wong YC (2002) Over expression of ID-1 in prostate cancer. J Urol 167(6):2598–2602. doi:10.1016/S0022-5347(05)65044-6

    Article  CAS  Google Scholar 

  34. Zhang X, Ling MT, Feng H, Wong YC, Tsao SW, Wang X (2004) Id-I stimulates cell proliferation through activation of EGFR in ovarian cancer cells. Br J Cancer 91(12):2042–2047. doi:10.1038/sj.bjc.6602254

    CAS  Google Scholar 

  35. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5(4):725–738. doi:10.1038/nprot.2010.5

    Article  CAS  Google Scholar 

  36. Zhang Y (2007) Template-based modeling and free modeling by I-TASSER in CASP7. Proteins 69(Suppl 8):108–117. doi:10.1002/prot.21702

    Article  CAS  Google Scholar 

  37. McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16(4):404–405. doi:10.1093/bioinformatics/16.4.404

    Article  CAS  Google Scholar 

  38. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J Chem Theor Comput 4(3):435–447. doi:10.1021/ct700301q

    Article  CAS  Google Scholar 

  39. Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718. doi:10.1002/jcc.20291

    Article  Google Scholar 

  40. Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78(8):1950–1958. doi:10.1002/prot.22711

    CAS  Google Scholar 

  41. Kawata M, Nagashima U (2001) Particle mesh Ewald method for three-dimensional systems with two-dimensional periodicity. Chem Phys Lett 340(1–2):165–172. doi:10.1016/S0009-2614(01)00393-1

    Article  CAS  Google Scholar 

  42. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: A linear constraint solver for molecular simulations. J Comput Chem 18(12):1463–1472. doi:10.1002/(sici)1096-987x(199709)18:12<1463::aid-jcc4>3.0.co;2-h

    Article  CAS  Google Scholar 

  43. Miyamoto S, Kollman PA (1992) Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem 13(8):952–962. doi:10.1002/jcc.540130805

    Article  CAS  Google Scholar 

  44. Martonak R, Laio A, Parrinello M (2003) Predicting crystal structures: the Parrinello-Rahman method revisited. Phys Rev Lett 90(7):075503. doi:10.1103/PhysRevLett.90.075503

    Article  CAS  Google Scholar 

  45. Goyal A, Muthu K, Panneerselvam M, Pole AK, Ramadas K (2011) Molecular dynamics simulation of the Staphylococcus aureus YsxC protein: molecular insights into ribosome assembly and allosteric inhibition of the protein. J Mol Model 17(12):3129–3149. doi:10.1007/s00894-011-0998-3

    Google Scholar 

  46. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26(2):283–291. doi:10.1107/S0021889892009944

    Article  CAS  Google Scholar 

  47. Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2(9):1511–1519. doi:10.1002/pro.5560020916

    Article  CAS  Google Scholar 

  48. Dominguez C, Boelens R, Bonvin AM (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125(7):1731–1737. doi:10.1021/ja026939x

    Article  CAS  Google Scholar 

  49. de Vries SJ, van Dijk AD, Krzeminski M, van Dijk M, Thureau A, Hsu V, Wassenaar T, Bonvin AM (2007) HADDOCK versus HADDOCK: new features and performance of HADDOCK2.0 on the CAPRI targets. Proteins 69(4):726–733. doi:10.1002/prot.21723

    Article  Google Scholar 

  50. Lamber EP, Vanhille L, Textor LC, Kachalova GS, Sieweke MH, Wilmanns M (2008) Regulation of the transcription factor Ets-1 by DNA-mediated homo-dimerization. EMBO J 27(14):2006–2017. doi:10.1038/emboj.2008.117

    Article  CAS  Google Scholar 

  51. Garvie CW, Pufall MA, Graves BJ, Wolberger C (2002) Structural analysis of the autoinhibition of Ets-1 and its role in protein partnerships. J Biol Chem 277(47):45529–45536. doi:10.1074/jbc.M206327200

    Article  CAS  Google Scholar 

  52. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8(2):127–134. doi:10.1093/protein/8.2.127

    Article  CAS  Google Scholar 

  53. Manivel P, Muthukumaran J, Kannan M, Krishna R (2011) Insight into residues involved in the structure and function of the breast cancer associated protein human gamma synuclein. J Mol Model 17(2):251–263. doi:10.1007/s00894-010-0718-4

    Article  CAS  Google Scholar 

  54. Kruger DM, Gohlke H DrugScorePPI webserver: fast and accurate in silico alanine scanning for scoring protein-protein interactions. Nucleic Acids Res 38(Web Server issue):W480–W486. doi: 10.1093/nar/gkq471

  55. Pesce S, Benezra R (1993) The loop region of the helix-loop-helix protein Id1 is critical for its dominant negative activity. Mol Cell Biol 13(12):7874–7880

    CAS  Google Scholar 

  56. Yokota Y, Mori S (2002) Role of Id family proteins in growth control. J Cell Physiol 190(1):21–28. doi:10.1002/jcp.10042

    Article  CAS  Google Scholar 

  57. Bounpheng MA, Dimas JJ, Dodds SG, Christy BA (1999) Degradation of Id proteins by the ubiquitin-proteasome pathway. FASEB J 13(15):2257–2264

    CAS  Google Scholar 

  58. Deed RW, Armitage S, Norton JD (1996) Nuclear localization and regulation of Id protein through an E protein-mediated chaperone mechanism. J Biol Chem 271(39):23603–23606. doi:10.1074/jbc.271.39.23603

    Article  CAS  Google Scholar 

  59. Weiss MS, Brandl M, Suhnel J, Pal D, Hilgenfeld R (2001) More hydrogen bonds for the (structural) biologist. Trends Biochem Sci 26(9):521–523

    Article  CAS  Google Scholar 

  60. Lesk A (2001) Introduction to protein architecture. Oxford University Press, Oxford

    Google Scholar 

  61. Guo Z, Mohanty U, Noehre J, Sawyer TK, Sherman W, Krilov G (2010) Probing the alpha-helical structural stability of stapled p53 peptides: molecular dynamics simulations and analysis. Chem Biol Drug Des 75(4):348–359. doi:10.1111/j.1747-0285.2010.00951.x

    Article  CAS  Google Scholar 

  62. Gallivan JP, Dougherty DA (1999) Cation-pi interactions in structural biology. Proc Natl Acad Sci U S A 96(17):9459–9464. doi:10.1073/pnas.96.17.9459

    Article  CAS  Google Scholar 

Download references

Acknowledgments

R. Krishna and P. Manivel thanks University Grant Commission (UGC), Government of India for providing financial assistance (F.No.37-313/2009 (SR)) to carry out the Research work. Kannan M. (No.F. 14-2(SC)/2009 (SA-III)) and Nishith Saurav Topno (No.F. 14-2(ST)/2010 (SA-III)) thank UGC for Rajiv Gandhi National Fellowship to pursue their PhD degree. J. Muthukumaran (No.09/559/(0076)/2011/EMR-I) thanks CSIR (Council of Scientific and Industrial Research) for Senior Research fellowship. R. Krishna also thanks Department of Biotechnology and Department of Information technology, Government of India, New Delhi for their financial support to Centre for Bioinformatics, Pondicherry University. We thank E. Malanco, P. Elavarasan and S. Manikandan, Senior technical assistants, Centre for Bioinformatics, Pondicherry University for their technical supports. Authors also extend their greetings and regards to Jayakanthan M. and Bhuvaenshwari S. for their timely help to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Ramadas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 313 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muthu, K., Panneerselvam, M., Jayaraman, M. et al. Structural insights into interacting mechanism of ID1 protein with an antagonist ID1/3-PA7 and agonist ETS-1 in treatment of ovarian cancer: molecular docking and dynamics studies. J Mol Model 18, 4865–4884 (2012). https://doi.org/10.1007/s00894-012-1489-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1489-x

Keywords

Navigation