Skip to main content
Log in

Theoretical study of the pH-dependent antioxidant properties of vitamin C

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Molecules acting as antioxidants capable of scavenging reactive oxygen species (ROS) are of utmost importance in the living cell. Vitamin C is known to be one of these molecules. In this study we have analyzed the reactivity of vitamin C toward the \( \cdot OH \) and \( \cdot OOH \) ROS species, in all acidic, neutral and basic media. In order to do so, density functional theory (DFT) have been used. More concretely, the meta-GGA functional MPW1B95 have been used. Two reaction types have been studied in each case: addition to the ring atoms, and hydrogen/proton abstraction. Our results show that \( \cdot OH \) is the most reactive species, while \( \cdot OOH \) displays low reactivity. In all three media, vitamin C reactions with two hydroxyl radicals show a wide variety of possible products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Niki E (2001) Free Radic Res 33:693

    Article  Google Scholar 

  2. Halliwell B, Gutteridge JM, Cross CE (1992) J Lab Clin Med 119:598

    CAS  Google Scholar 

  3. Young LS, Woodside JV (2001) J Clin Pathol 54:176

    Article  CAS  Google Scholar 

  4. Ames BN, Shigenaga MK, Hagen TM (1993) Proc Nat Ac Sci USA 90:7915

    Article  CAS  Google Scholar 

  5. Gey KF, Brubacher GB, Stahelin HB (1987) Am J Clin Nutr 45:1368

    CAS  Google Scholar 

  6. Frei B, Stocker R, Ames BN (1988) Proc Nat Ac Sci USA 85:9748

    Article  CAS  Google Scholar 

  7. Berlett BS, Stadtman ER (1997) J Biol Chem 272:20313

    Article  CAS  Google Scholar 

  8. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, Oxford, and references therein

    Google Scholar 

  9. Stocker P, Lesgards JF, Vidal N, Chalier F, Prost M (2003) Biochim Biophys Acta 1621:1

    Article  CAS  Google Scholar 

  10. Padayyaty SJ, Katz A, Wang Y, Eck P, Kwon O, Lee JH, Chen S, Corpe C, Dutta A, Dutta SK, Levine M (2003) J Am Coll Nutr 18:22

    Google Scholar 

  11. Mitsuta K, Mizuta Y, Kohno M, Hiramatsu M, Mori A (1990) Bull Chem Soc Jpn 63:187

    Article  CAS  Google Scholar 

  12. Gershoff SN (1993) Nutr Rev 51:313

    Article  CAS  Google Scholar 

  13. Buettner GR, Moseley PL (1993) Free Radic Res Commun 19:589

    Google Scholar 

  14. Bielski BH, Richter HW, Chan PC (1975) Ann NY Acad Sci 258:231

    Article  CAS  Google Scholar 

  15. Meister A (1994) J Biol Chem 269:9397

    CAS  Google Scholar 

  16. Tolbert BM, Ward JB (1982) In: Tolbert BM (ed) Ascorbic acid: chemistry, metabolism and uses. American Chemical Society, Washington D.C., p 101

  17. Buettner GR (1993) Arch Biochem Biophys 300:535

    Article  CAS  Google Scholar 

  18. Halliwell B (1999) Trends Biochem Sci 24:255

    Article  CAS  Google Scholar 

  19. Buettner GR and Jurkiewicz BH (1996) In: Cadenas E, Packer L (eds) Handbook of antioxidants. Dekker, New York, p 91

  20. Bendich A, Machlin JL, Scandurra O, Burton GW, Wayner DD (1986) Adv Free Radic Biol Med 2:419

    Article  CAS  Google Scholar 

  21. Fraga S, Saxena KMS, Lo BWN (1971) Atom Data Nucl Data 3:323

    Article  Google Scholar 

  22. Lutsenko EA, Carcamo JM, Golde DW (2002) J Biol Chem 227:16895

    Article  Google Scholar 

  23. Martensson J, Meister A (1991) Proc Nat Ac Sci USA 88:4656

    Article  CAS  Google Scholar 

  24. Laroff GP, Fessnden RW, Schler RH (1972) J Am Chem Soc 94:9062

    Article  CAS  Google Scholar 

  25. Wilson C, Gisvolds O (1998) Textbook of organic medicinal and pharmaceutical chemistry. Lippincott-Raven, Philadelphia, p 915

  26. Allen RN, Shukla MK, Reed D, Leszczynski J (2006) Int J Quant Chem 106:2934

    Article  CAS  Google Scholar 

  27. Shukla MK, Mishra PC (1995) J Mol Struct 377:277

    Google Scholar 

  28. Hvoslef J (1969) J Acta Crystallogr B 25:2214

    Article  CAS  Google Scholar 

  29. Zhao Y, Lynch BJ, Truhlar DG (2004) J Phys Chem A 108:2715

    Article  CAS  Google Scholar 

  30. Zhao Y, Lynch BJ, Truhlar DG (2004) J Phys Chem A 108:4786

    Article  CAS  Google Scholar 

  31. Zhao Y, Pu J, Lynch BJ, and TruhlarD (2004) G Phys Chem Chem Phys 673

  32. Zhao Y, Truhlar DG (2004) J Phys Chem A 108:6908

    Article  CAS  Google Scholar 

  33. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    Article  Google Scholar 

  34. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  35. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154

    Article  CAS  Google Scholar 

  36. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523

    Article  CAS  Google Scholar 

  37. Mennucci B, Tomasi J (1997) J Chem Phys 106:5151

    Article  CAS  Google Scholar 

  38. Tomasi J, Mennucci B, Cances E (1999) J Mol Struct (THEOCHEM) 464:211

    Article  CAS  Google Scholar 

  39. Tejero I, Gonzalez-Lafont A, Lluch JM, Eriksson LA (2004) Chem Phys Lett 398:336

    Article  CAS  Google Scholar 

  40. Matxain JM, Ristila M, Strid Å, Eriksson LA (2006) J Phys Chem A 110:13068

    Article  CAS  Google Scholar 

  41. Matxain JM, Ristila M, Strid Å̊ et al. (2007) Chem Eur J 13:4636–4642

  42. Frisch MJ, Trucks GW, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Jr Montgomery JA (2004) Pople, Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford, CT

    Google Scholar 

Download references

Acknowledgments

This research was funded by Eusko Jaurlaritza (GIC 07/85 IT-330-07) and the Spanish Office for Scientific Research (CTQ2011-27374). The SGI/IZO-SGIker UPV/EHU (supported by Fondo Social Europeo and MCyT) is gratefully acknowledged for generous allocation of computational resources. JMM would like to thank Spanish Ministry of Science and Innovation for funding through a Ramon y Cajal fellow position (RYC 2008-03216).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon M. Matxain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mujika, J.I., Matxain, J.M. Theoretical study of the pH-dependent antioxidant properties of vitamin C. J Mol Model 19, 1945–1952 (2013). https://doi.org/10.1007/s00894-012-1465-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1465-5

Keywords

Navigation