Skip to main content
Log in

Non-covalent interactions – QTAIM and NBO analysis

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

MP2(full)/6-311++G(3df,3pd) calculations were carried out on complexes linked through various non-covalent Lewis acid – Lewis base interactions. These are: hydrogen bond, dihydrogen bond, hydride bond and halogen bond. The quantum theory of ´atoms in molecules´ (QTAIM) as well as the natural bond orbitals (NBO) method were applied to analyze properties of these interactions. It was found that for the A-H…B hydrogen bond as well as for the A-X…B halogen bond (X designates halogen) the complex formation leads to the increase of s-character in the A-atom hybrid orbital aimed toward the H or X atom. In opposite, for the A…H-B hydride bond, where the H-atom possesses negative charge, the decrease of s-character in the B-atom orbital is observed. All these changes connected with the redistribution of the electron charge being the effect of the complex formation are in line with Bent´s rule. The numerous correlations between energetic, geometrical, NBO and QTAIM parameters were also found.

QTAIM atomic radii for NH4 +…HMgH and Na+…HBeH

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Chart 1
Fig. 5

Similar content being viewed by others

References

  1. Murray JS, Riley KE, Politzer P, Clark T (2010) Aust J Chem 63:1598–1607

    Article  CAS  Google Scholar 

  2. Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer, Berlin

    Book  Google Scholar 

  3. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  4. Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, New York

    Google Scholar 

  5. Grabowski SJ (ed) (2006) Hydrogen bonding – new insights. Vol.3 of the series: challenges and advances in computational chemistry and physics. In: Leszczynski J (ed) Springer, Dordrecht

  6. Lipkowski P, Grabowski SJ, Leszczynski J (2006) J Phys Chem A 110:10296–10302

    Article  CAS  Google Scholar 

  7. Metrangolo P, Resnati G (2001) Chem Eur J 7:2511–2519

    Article  CAS  Google Scholar 

  8. Formigué M, Batail P (2004) Chem Rev 104:5379–5418

    Article  Google Scholar 

  9. Zordan F, Brammer L, Sherwood P (2005) J Am Chem Soc 127:5979–5989

    Article  CAS  Google Scholar 

  10. Clark T, Hennemann M, Murray J, Politzer P (2007) J Mol Model 13:291–296

    Article  CAS  Google Scholar 

  11. Peris E, Lee JC Jr, Rambo J, Eisenstein O, Crabtree RH (1995) J Am Chem Soc 117:3485–3491

    Article  CAS  Google Scholar 

  12. Wessel J, Lee JC Jr, Peris E, Yap GPA, Fortin JB, Ricci JS, Sini G, Albinati A, Koetzle TF, Eisenstein O, Rheingold AL, Crabtree RH (1995) Angew Chem Int Ed Engl 34:2507–2509

    Article  CAS  Google Scholar 

  13. Crabtree RH, Siegbahn PEM, Eisenstein O, Rheingold AL, Koetzle TF (1996) Acc Chem Res 29:348–354

    Article  CAS  Google Scholar 

  14. Bakhmutow VI (2008) Dihydrogen bonds. Wiley, New Jersey

    Book  Google Scholar 

  15. Alkorta I, Rozas I, Elguero J (1998) Chem Soc Rev 27:163–170

    Article  CAS  Google Scholar 

  16. Rozas I, Alkorta I, Elguero J (1997) J Phys Chem A 101:4236–4244

    Article  CAS  Google Scholar 

  17. Cotton FA, Matonic JH, Murillo CA (1998) J Am Chem Soc 120:6047–6052

    Article  CAS  Google Scholar 

  18. Grabowski SJ, Sokalski WA, Leszczynski J (2006) Chem Phys Lett 422:334–339

    Article  CAS  Google Scholar 

  19. Scheiner S (2011) J Chem Phys 134:094315–094323

    Article  Google Scholar 

  20. Scheiner S (2011) J Phys Chem A 115:11202–11209

    Article  CAS  Google Scholar 

  21. Weinhold F, Landis C (2005) Valency and bonding, a natural bond orbital donor – acceptor perspective. Cambridge University Press, Cambridge

  22. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  23. Weinhold F (1997) J Mol Struct THEOCHEM 398–399:181–197

    Article  Google Scholar 

  24. Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) J Mol Model 13:305–311

    Article  CAS  Google Scholar 

  25. Murray JS, Lane P, Clark T, Politzer P (2007) J Mol Model 13:1033–1038

    Article  CAS  Google Scholar 

  26. Politzer P, Murray JS, Concha MC (2008) J Mol Model 14:659–665

    Article  CAS  Google Scholar 

  27. Murray J, Concha MC, Lane P, Hobza P, Politzer P (2008) J Mol Model 14:699–704

    Article  CAS  Google Scholar 

  28. Murray J, Lane P, Politzer P (2009) J Mol Model 15:723–729

    Article  CAS  Google Scholar 

  29. Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748–7757

    Article  CAS  Google Scholar 

  30. Grabowski SJ (2011) Chem Rev 11:2597–2625

    Article  Google Scholar 

  31. Sobczyk L, Grabowski SJ, Krygowski TM (2005) Chem Rev 105:3513–3560

    Article  CAS  Google Scholar 

  32. Alabugin IV, Manoharan M, Peabody S, Weinhold F (2003) J Am Chem Soc 125:5973–5987

    Article  CAS  Google Scholar 

  33. Grabowski SJ, Ugalde JM (2010) J Phys Chem A 114:7223–7229

    Article  CAS  Google Scholar 

  34. Alabugin IV, Manoharan M (2006) J Comput Chem 28:373–390

    Article  Google Scholar 

  35. Bent HA (1961) Chem Rev 61:275–311

    Article  CAS  Google Scholar 

  36. Koch U, Popelier PLA (1995) J Phys Chem A 99:9747–9754

    Article  CAS  Google Scholar 

  37. Popelier P (2000) Atoms in Molecules. An Introduction. Prentice Hall, Harlow UK

    Google Scholar 

  38. Grabowski SJ (2011) J Phys Chem A 115:12789–12799

    Article  CAS  Google Scholar 

  39. Grabowski SJ (2011) J Phys Chem A 115:12340–12347

    Article  CAS  Google Scholar 

  40. Grabowski SJ (2012) J Phys Chem A 116:1838–1845

    Article  CAS  Google Scholar 

  41. Frisch MJ, Trucks GW et al (2009) Gaussian 09, Revision A.1. Gaussian Inc, Wallingford, CT

    Google Scholar 

  42. Gu Y, Kar T, Scheiner S (1999) J Am Chem Soc 121:9411–9422

    Article  CAS  Google Scholar 

  43. Boys SF, Bernardi F (1979) Mol Phys 19:553–566

    Article  Google Scholar 

  44. Grabowski SJ (2006) Annu Rep Prog Chem Sect C 102:131–165

    Article  CAS  Google Scholar 

  45. Grabowski SJ, Sadlej AJ, Sokalski WA, Leszczynski J (2006) Chem Phys 327:151–158

    Article  CAS  Google Scholar 

  46. Bader RFW (1985) Acc Chem Res 18:9–15

    Article  CAS  Google Scholar 

  47. Bader RFW (1991) Chem Rev 91:893–928

    Article  CAS  Google Scholar 

  48. Bader RFW (1990) Atoms in molecules, a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  49. Matta C, Boyd RJ (eds) (2007) Quantum theory of atoms in molecules: recent progress in theory and application. Wiley-VCH, Weinheim

    Google Scholar 

  50. Keith TA (2011) AIMAll (Version 11.08.23), TK Gristmill Software, Overland Park KS, USA (aim.tkgristmill.com)

  51. Cybulski H, Pecul M, Sadlej J, Helgaker T (2003) J Chem Phys 119:5094–5104

    Article  CAS  Google Scholar 

  52. Grabowski SJ, Sokalski WA, Dyguda E, Leszczynski J (2006) J Phys Chem B 110:6444–6446

    Article  CAS  Google Scholar 

  53. Nishio M, Hirota M, Umezawa Y (1998) The CH/π interaction, evidence, nature, and consequences. Wiley, New York

    Google Scholar 

  54. Cremer D, Kraka E (1984) Croat Chem Acta 57:1259–1281

    Google Scholar 

  55. Rozas I, Alkorta I, Elguero J (2000) J Am Chem Soc 122:11154–11161

    Article  CAS  Google Scholar 

  56. Joseph J, Jemmis ED (2007) J Am Chem Soc 129:4620–4632

    Article  CAS  Google Scholar 

  57. Hobza P (2001) Phys Chem Chem Phys 3:2555–2556

    Article  CAS  Google Scholar 

  58. Hobza P, Havlas Z (2000) Chem Rev 100:4253–4264

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support comes from Eusko Jaurlaritza (GIC 07/85 IT-330-07) and the Spanish Office for Scientific Research (CTQ2011-27374). Technical and human support provided by Informatikako Zerbitzu Orokora - Servicio General de Informatica de la Universidad del Pais Vasco (SGI/IZO-SGIker UPV/EHU), Ministerio de Ciencia e Innovación (MICINN), Gobierno Vasco Eusko Jaurlanitza (GV/EJ), European Social Fund (ESF) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sławomir J. Grabowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grabowski, S.J. Non-covalent interactions – QTAIM and NBO analysis. J Mol Model 19, 4713–4721 (2013). https://doi.org/10.1007/s00894-012-1463-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1463-7

Keywords

Navigation