Journal of Molecular Modeling

, Volume 18, Issue 9, pp 4491–4501 | Cite as

Active components of frequently used β-blockers from the aspect of computational study

  • Stevan Armaković
  • Sanja J. Armaković
  • Jovan P. Šetrajčić
  • Igor J. Šetrajčić
Original Paper

Abstract

The aim of this study is to investigate the active components of representative drugs for blood pressure regulation by applying quantum mechanical computer codes and comparison of the same for the sake of obtaining knowledge about the properties associated with the electronic structure of given molecules. The study included three well-known, but not theoretically investigated enough, active components of β-blockers: acebutolol, metoprolol and atenolol. The results are in agreement with the experimental data and were used for initial assumptions concerning the degradation of these compounds.

Figure

Active components of frequently used β-blockers 

Keywords

Aromaticity β-blockers NBO NMR parameters NPA Stability 

References

  1. 1.
    Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32:3245–3260CrossRefGoogle Scholar
  2. 2.
    Zuccato E, Calamari D, Natangelo M, Fanelli R (2000) Presence of therapeutic drugs in the environment. Lancet 355:1789–1790CrossRefGoogle Scholar
  3. 3.
    Jorgensen SE, Halling-Sorensen B (2000) Drugs in the environment. Chemosphere 40:691–699CrossRefGoogle Scholar
  4. 4.
    Liu QT, Cumming RI, Sharpe AD (2009) Photo-induced environmental depletion processes of beta-blockers in river waters. Photochem Photobiol Sci 8:768–777CrossRefGoogle Scholar
  5. 5.
    Alder AC, Schaffner C, Majewsky M, Klasmeier J, Fenner K (2010) Fate of β-blocker human pharmaceuticals in surface water: comparison of measured and simulated concentrations in the Glatt Valley Watershed, Switzerland. Water Res 44:936–948CrossRefGoogle Scholar
  6. 6.
    Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159CrossRefGoogle Scholar
  7. 7.
    Piram A, Salvador A, Verne C, Herbreteau B, Faure R (2008) Photolysis of β-blockers in environmental waters. Chemosphere 73:1265–1271CrossRefGoogle Scholar
  8. 8.
    Yang H, An T, Li G, Song W, Cooper WJ, Luo H, Guo X (2010) Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of TiO2: a case of β-blockers. J Hazard Mater 179:834–839CrossRefGoogle Scholar
  9. 9.
    Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107(suppl 6):907–938CrossRefGoogle Scholar
  10. 10.
    Abramović B, Kler S, Šojić D, Laušević M, Radović T, Vione D (2011) Photocatalytic degradation of metoprolol tartrate in suspensions of two TiO2-based photocatalysts with different surface area. Identification of intermediates and proposal of degradation pathways. J Hazard Mater 198:123–132CrossRefGoogle Scholar
  11. 11.
    Romero V, De la Cruz N, Dantas RF, Marco P, Giménez J, Esplugas S (2011) Photocatalytic treatment of metoprolol and propranolol. Catal Today 161:115–120CrossRefGoogle Scholar
  12. 12.
    Silverstein RM, Webster FX (1997) Spectrometric identification of organic compounds. Wiley, New YorkGoogle Scholar
  13. 13.
    Ghafouri R, Anafcheh M (2012) A computational NICS and 13C NMR characterization of C 60-nSi n heterofullerenes (n = 1, 2, 6, 12, 20, 24, 30). J Clust Sci doi: 10.1007/s10876-012-0456-0Google Scholar
  14. 14.
    Corminboeuf C, Fowler PW, Heine T (2002) 13C NMR patterns of C36H2x fullerene hydrides. Chem Phys Lett 361:405–410CrossRefGoogle Scholar
  15. 15.
    Anafcheh M, Hadipour NL (2011) A computational NICS and 13C NMR characterization of BN-substituted 60C fullerenes. Phys E 44:400–404CrossRefGoogle Scholar
  16. 16.
    Schleyer PVR, Maerker C, Dransfeld A, Jiao H, Van Eikema Hommes NJR (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318CrossRefGoogle Scholar
  17. 17.
    Hensen J (2010) Molecular modeling basics. Taylor and Francis, Boca RatonGoogle Scholar
  18. 18.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) GAMESS VERSION = 12 JAN 2009 (R3). J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  19. 19.
    Bode BM, Gordon MS (1998) MacMolPlt: a graphical user interface for GAMESS. J Mol Graph Model 16:133–138CrossRefGoogle Scholar
  20. 20.
    Avogadro: an open-source molecular builder and visualization tool. Version 1.0.3 http://avogadro.openmolecules.net/
  21. 21.
    Wolinski K, Hinton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112:8251–8260CrossRefGoogle Scholar
  22. 22.
    Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093CrossRefGoogle Scholar
  23. 23.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven JRT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian Inc, Wallingford CTGoogle Scholar
  24. 24.
    Pearson RG (1989) Absolute electronegativity and hardness: applications to organic chemistry. J Org Chem 54:1423–1430CrossRefGoogle Scholar
  25. 25.
    Parr RG, Chattaraj PK (1991) Principle of maximum hardness. J Am Chem Soc 113:1854–1855CrossRefGoogle Scholar
  26. 26.
    Chandrakumar KRS, Ghanty TK, Ghosh SK (2004) Relationship between ionization potential, polarizability, and softness: a case study of lithium and sodium metal clusters. J Phys Chem A 108:6661–6666CrossRefGoogle Scholar
  27. 27.
    Chattaraj PK, Lee H, Parr RG (1991) HSAB principle. J Am Chem Soc 113:1855–1856CrossRefGoogle Scholar
  28. 28.
    Kalaichelvan S, Sundaraganesan N, Dereli O, Sayin U (2012) Experimental, theoretical calculations of the vibrational spectra and conformational analysis of 2,4-di-tert-butylphenol. Spectrochim Acta A 85:198–209CrossRefGoogle Scholar
  29. 29.
    Ozdemir N, Eren B, Dincer M, Bekdemir Y (2010) Experimental and ab initio computational studies on 4-(1H-benzo[d]imidazol-2-yl)-N, N-dimethylaniline. Mol Phys 108:13–24CrossRefGoogle Scholar
  30. 30.
    Politzer P, Murray JS (2002) The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor Chem Acc 108:134–142CrossRefGoogle Scholar
  31. 31.
    Okulik N, Jubert AH (2004) Theoretical study on the structure and reactive sites of non-steroidal anti-inflammatory drugs. J Mol Struct (THEOCHEM) 682:55–62CrossRefGoogle Scholar
  32. 32.
    Doll TE, Frimmel FH (2003) Fate of pharmaceuticals—photodegradation by simulated solar UV-light. Chemosphere 52:1757–1769CrossRefGoogle Scholar
  33. 33.
    Corminboeuf C, Heine T, Seifert G, PvR S, Weber J (2004) Induced magnetic fields in aromatic [n]-annulenes—interpretation of NICS tensor components. Phys Chem Chem Phys 6:273–276CrossRefGoogle Scholar
  34. 34.
    Oziminski WP (2012) Tautomeric equilibria and aromaticity of phosphodiazoles: an ab initio study. J Theor Comput Chem 980:92–100CrossRefGoogle Scholar
  35. 35.
    Zielińska-Pisklak MA, Pisklak DM, Wawer I (2011) 1H and 13C NMR characteristics of β-blockers. Magn Reson Chem 49:284–290CrossRefGoogle Scholar
  36. 36.
    Teksin ZS, Hom K, Balakrishnan A, Polli JE (2006) Ion pair-mediated transport of metoprolol across a three lipid-component PAMPA system. J Control Release 116:50–57CrossRefGoogle Scholar
  37. 37.
    Rossini AJ, Mills RW, Briscoe GA, Norton EL, Geier SJ, Hung I, Zheng S, Autschbach J, Schurko RW (2009) Solid-state chlorine NMR of group IV transition metal organometallic complexes. J Am Chem Soc 131:3317–3330CrossRefGoogle Scholar
  38. 38.
    Autschbach J, Zheng S, Schurko RW (2010) Analysis of electric field gradient tensors at quadrupolar nuclei in common structural motifs. Concept Magn Reson A 36:84–126Google Scholar
  39. 39.
    Xavier RJ, Gobinath E (2012) FT-IR, FT-Raman, ab initio and DFT studies, HOMO–LUMO and NBO analysis of 3-amino-5-mercapto-1,2,4-triazole. Spectrochim Acta A 86:242–251CrossRefGoogle Scholar
  40. 40.
    Irikura KK (1998) Computational thermochemistry: prediction and estimation of molecular thermodynamics (ACS Symposium Series 677). American Chemical Society, WashingtonCrossRefGoogle Scholar
  41. 41.
    Yurdakul Ş, Badoģlu S (2011) Quantum chemical studies on prototautomerism of 1H-imidazo[4,5-c]pyridine. Int J Quantum Chem 111:2944–2959CrossRefGoogle Scholar
  42. 42.
    Chavatte P, Yous S, Marot C, Baurin N, Lesieur D (2001) Three-dimensional quantitative structure–activity relationships of cyclo-oxygenase-2 (COX–2) inhibitors: a comparative molecular field analysis. J Med Chem 44:3223–3230CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Stevan Armaković
    • 1
  • Sanja J. Armaković
    • 2
  • Jovan P. Šetrajčić
    • 1
    • 3
  • Igor J. Šetrajčić
    • 1
  1. 1.Faculty of Sciences, Department of PhysicsUniversity of Novi SadNovi SadSerbia
  2. 2.Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental ProtectionUniversity of Novi SadNovi SadSerbia
  3. 3.Academy of Sciences and Arts of Republic of SrpskaBanja LukaBosnia and Herzegovina

Personalised recommendations