Skip to main content

Advertisement

Log in

Interaction of wild type, G68R and L125M isoforms of the arylamine-N-acetyltransferase from Mycobacterium tuberculosis with isoniazid: a computational study on a new possible mechanism of resistance

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Isoniazid (INH) is a front-line drug used in the treatment of tuberculosis (TB), a disease that remains a major cause of death worldwide. Isoniazid is a prodrug, requiring activation in the mycobacterial cell by the catalase-peroxidase (CP) enzyme. Recent studies have suggested that acetylation of INH by the arylamine-N-acetyltransferase from Mycobacterium tuberculosis (TBNAT) may be a possible cause of inactivation of the drug thus resulting in resistant strains. In this study, computational techniques were applied to investigate the binding of isoniazid to three TBNAT isoforms: wild type, G68R and L125M. Since there is no experimental structure available, molecular dynamics (MD) simulations were initially used for the refinement of TBNAT homology models. Distinct conformations of the models were selected during the production stage of MD simulations for molecular docking experiments with the drug. Finally, each mode of binding was refined by new molecular MD simulations. Essential dynamics (ED) analysis and linear interaction energy calculations (LIE) were used to evaluate the impact of amino acid substitutions on the structural and binding properties of the enzymes. The results suggest that the wild type and the G68R TBNATs have a similar pattern of affinity to INH. On the other hand, the calculated enzyme-INH dissociation constant (KD) was estimated 33 times lower for L125M isoform in comparison with wild type enzyme. This last finding is consistent with the hypothesis that isolated mutations in the tbnat gene can produce M. tuberculosis strains resistant to isoniazid.

Global structure of the complexes and binding mode of INH calculated for the last frame of MD simulations

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TB:

Tuberculosis

INH:

Isoniazid

CP:

Catalase-peroxidase

NAT:

Arylamine N-acetyltransferase

TBNAT:

Arylamine-N-acetyltransferase from Mycobacterium tuberculosis

MD:

Molecular dynamics

ED:

Essential dynamics

LIE:

Linear interaction energy

SNPs:

Single nucleotide polymorphisms

K D :

Dissociation constant

NCBI:

National Center for Biotechnology Information

InChITM :

The IUPAC International Chemical Identifier

AM1:

Austin model 1

MEP:

Molecular electrostatic potential

CHELPG:

Charges from electrostatic grid based

SPC:

Simple point charge

ADT:

AutoDock tools

RMSD:

Root mean square deviation

LGA:

Lamarckian genetic algorithm

LS:

Local search

vdW:

van der Waals

el:

Electrostatic

Rg:

Radius of gyration

NHb:

Number of intramolecular hydrogen bonds

SASA:

Surface accessible solvent area

RMSF:

Root mean square fluctuation

MC:

Monte Carlo

References

  1. Zhang Y, Young DB (1993) Molecular mechanisms of isoniazid: a drug at the front line of tuberculosis control. Trends Microbiol 1:109–113

    Article  CAS  Google Scholar 

  2. Timmins GS, Deretic V (2006) Mechanisms of action of isoniazid. Mol Microbiol 62:1220–1227

    Article  CAS  Google Scholar 

  3. Balcells ME, Thomas SL, Godfrey-Faussett P, Grant AD (2006) Isoniazid preventive therapy and risk for resistant tuberculosis. Emerg Infect Dis 12:744–751

    Article  CAS  Google Scholar 

  4. WHO (2011) World Health Organization. http://www.who.int/infectious-disease-report/pages/ch2text.html. Accessed 02 April 2011

  5. Bhakta S, Besra GS, Upton AM, Parish T, Vernon CS, Gibson KJC, Knutton S, Gordon S, Silva RP, Anderton MC, Sim E (2004) Arylamine N-acetyltransferase is required for synthesis of mycolic acids and complex lipids in Mycobacterium bovis BCG and represents a novel drug target. J Exp Med 199:1191–1199

    Article  CAS  Google Scholar 

  6. Sandy J, Mushtaq A, Holton SJ, Schartau P, Noble MEM, Sim E (2005) Investigation of the catalytic triad of arylamine N-acetyltransferases: essential residues required for acetyl transfer to arylamines. Biochem J 390:115–123

    Article  CAS  Google Scholar 

  7. Mdluli K, Swanson J, Fischer E, Lee RE, Barry CE (1998) Mechanisms involved in the intrinsic isoniazid resistance of Mycobacterium avium. Mol Microbiol 27:1223–1233

    Article  CAS  Google Scholar 

  8. Somoskovi A, Parsons LM, Salfinger M (2001) The molecular basis of resistance to isoniazid, rifampin, and pyrazinamide in Mycobacterium tuberculosis. Respir Res 2:164–168

    Article  CAS  Google Scholar 

  9. Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, Collins D, Lisle G, Jacobs WR Jr (1994) inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263:227–230

    Article  CAS  Google Scholar 

  10. Kelley CL, Rouse DA, Morris SL (1997) Analysis do ahpC gene mutations in isoniazid resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Ch 41:2057–2058

    CAS  Google Scholar 

  11. Ramaswamy S, Musser JM (1998) Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuber Lung Dis 79:3–29

    Article  CAS  Google Scholar 

  12. Mdluli K, Slayden RA, Zhu Y, Ramaswamy S, Pan X, Mead D, Crane DD, Musser JM, Barry CE (1998) Inhibition of a Mycobacterium tuberculosis beta-ketoacyl ACP synthase by isoniazid. Science 280:1607–1610

    Article  CAS  Google Scholar 

  13. Lee ASG, Teo ASM, Wong SY (2001) Novel mutations in ndh in isoniazid-resistant Mycobacterium tuberculosis isolates. Antimicrob Agents Ch 45:2157–2159

    Article  CAS  Google Scholar 

  14. Almeida Da Silva PE, Palomino JC (2011) Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J Antimicrob Chemother 66:1417–1430

    Article  CAS  Google Scholar 

  15. van Rie A, Warren R, Mshanga I, Jordaan AM, van der Spuy GD, Richardson M, Simpson J, Gie RP, Enarson DA, Beyers N, van Helden PD, Victor TC (2001) Analysis for a limited number of gene codons can predict drug resistance of Mycobacterium tuberculosis in a high-incidence community. J Clin Microbiol 39:636–641

    Article  Google Scholar 

  16. Silva MSN, Senna S, Ribeiro MO, Valim AM, Telles MA, Kritski AL, Morlock GP, Cooksey RC, Zaha A, Rossetti MLR (2003) Mutations in katG, inhA and ahpC genes of brazilian isoniazid-resistant isolates of Mycobacterium tuberculosis. J Clin Microbiol 41:4471–4474

    Article  CAS  Google Scholar 

  17. Dalla Costa ER, Ribeiro MO, Silva MSN, Arnold LS, Rostirolla DC, Cafrune PI, Espinoza RC, Palaci M, Telles M, Ritacco V, Suffys PN, Lopes ML, Campelo CL, Miranda SS, Kremer K, Silva Almeida PE, Fonseca LS HOJL, Kritski AL, Rossetti MLR (2009) Correlations of mutations in katG, oxyR-ahpC and inhA genes and in vitro susceptibility in Mycobacterium tuberculosis clinical strains segregated by spoligotype families from tuberculosis prevalent countries in South America. BMC Microbiol 9:1–11

    Article  Google Scholar 

  18. Coelho MB, Dalla Costa ER, Vasconcellos SEG, Linck N, Ramos RM, de Amorim HLN, Suffys PN, Santos AR, da Silva PEA, Ramos DF, Silva MSN, Rossetti MLR (2011) Sequence and structural characterization of tbnat gene in isoniazid-resistant Mycobacterium tuberculosis: identification of new mutations. Mutat Res 712:33–39

    Article  CAS  Google Scholar 

  19. Sim E, Walters K, Boukouvala S (2008) Arylamine N-acetyltransferases: from structure to function. Drug Metab Rev 40:479–510

    Article  CAS  Google Scholar 

  20. Weber WW, Hein DW (1985) N-acetylation pharmacogenetics. Pharmacol Rev 37:25–27

    CAS  Google Scholar 

  21. Sim E, Lack N, Wang CJ, Long H, Westwood I, Fullam E, Kawamura A (2008) Arylamine N-acetyltransferases: structural and functional implications of polymorphisms. Toxicology 254:170–183

    Article  CAS  Google Scholar 

  22. Upton AM, Mushtaq A, Victor TC, Sampson SL, Sandy J, Smith DM, van Helden PD, Sim E (2001) Arylamine N-acetyltransferase of Mycobacterium tuberculosis is a polymorphic enzyme and a site of isoniazid metabolism. Mol Microbiol 42:309–317

    Article  CAS  Google Scholar 

  23. Sandy J, Holton S, Fullam E, Sim E, Noble M (2005) Binding of the anti-tubercular drug isoniazid to the arylamine N-acetyltransferase protein from Mycobacterium smegmatis. Protein Sci 14:775–782

    Article  CAS  Google Scholar 

  24. Payton M, Auty R, Delgoda R, Everett M, Sim E (1999) Cloning and characterization of arylamine N-acetyltransferase genes from Mycobacterium smegmatis and Mycobacterium tuberculosis: increased expression results in isoniazid resistance. J Bacteriol 181:1343–1347

    CAS  Google Scholar 

  25. Sholto-Douglas-Vernon C, Sandy J, Victor TC, Sim E, Helden PD (2005) Mutational and expression analysis of tbnat and its response to isoniazid. J Med Microbiol 54:1189–1197

    Article  CAS  Google Scholar 

  26. Coelho MB (2008) Análise da presença de bombas de efluxo e mutações no gene nat em Mycobacterium tuberculosis resistentes a isoniazida. Universidade Luterana do Brasil, Dissertação de Mestrado

    Google Scholar 

  27. Fullam E, Westwood IM, Anderton MC, Lowe ED, Sim E, Noble ME (2008) Divergence of cofator recognition across evolution: coenzyme A binding in a prokaryotic arylamine N-acetyltransferase. J Mol Biol 375:178–191

    Article  CAS  Google Scholar 

  28. Dalby A, Nourse JG, Hounshell WD, Gushurst AKI, Grier DL, Leland BA, Laufer J (1992) Description of several chemical structure file formats used by computer programs developed at Molecular Design Limited. J Chem Inf Comp Sci 32:244–255

    Article  CAS  Google Scholar 

  29. Spessard GO (1998) ACD Labs/LogP dB 3.5 and ChemSketch 3.5. J Chem Inf Comput Sci 38:1250–1253

    Article  CAS  Google Scholar 

  30. Thompson MA (2004) Planaria Software LLC, Seattle, WA, http://www.arguslab.com

  31. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 107:3902–3909

    Article  CAS  Google Scholar 

  32. Aalten DMF, Bywater R, Findlay JBC, Hendlich M, Hooft RWW, Vriend G (1996) PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. J Comp Aid Molec Des 10:255–262

    Article  Google Scholar 

  33. Chuang IL, Gershenfeld N, Kubinec M (1998) Experimental implementation of fast quantum searching. Phys Rev Lett 80:3408–3411

    Article  CAS  Google Scholar 

  34. Breneman CM, Wiberg KB (1990) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem 11:361–373

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA (2004) Gaussian 03 Revision C.02. Gaussian Inc, Wallingford, CT http://www.gaussian.com/home.htm

  36. Oostenbrink C, Villa A, Mark AE, van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676

    Article  CAS  Google Scholar 

  37. van der Spoel D, Lindahl E, Hess B, van Buuren AR, Apol E, Meulenhoff PJ, Tieleman DP, Sijbers ALTM, Feenstra KA, van Drunen R, Berendsen HJC (2010) Gromacs User Manual version 4.5.4 http://www.gromacs.org

  38. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Intermolecular forces. In: Pullman B (ed) Interaction models for water in relation to protein hydration. Reidel, Dordrecht, pp 331–342

    Google Scholar 

  39. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  40. Nosé S, Klein ML (1983) Constant pressure molecular dynamics for molecular systems. Mol Phys 50:1055–1076

    Article  Google Scholar 

  41. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190

    Article  CAS  Google Scholar 

  42. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: A linear constraint solver for molecular simulations. J Comp Chem 18:1463–1472

    Article  CAS  Google Scholar 

  43. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an Nlog-(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  44. Goodsell DS, Morris GM, Olson AJ (1996) Automated docking of flexible ligands: applications of AutoDock. J Mol Recognit 9:1–5

    Article  CAS  Google Scholar 

  45. Goodsell DS (2005) Computational docking of biomolecular complexes with AutoDock. In: Golemis E, Adams P (eds) Protein-protein interactions: a molecular cloning manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, p 885

    Google Scholar 

  46. Morris GM, Huey R, Olson AJ (2008) Using AutoDock for ligand-receptor docking. Curr Prot Bioinf 24:8.14.1–8.14.40

    Google Scholar 

  47. Sanner MF (1999) Python: a programming language for software integration and development. J Mol Graphics Mod 17:57–61

    CAS  Google Scholar 

  48. Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity - a rapid access to atomic charges. Tetrahedron 36:3219–3228

    Article  CAS  Google Scholar 

  49. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a lamarckian genetic algorithm and and empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  50. Solis FJ, Wets RJB (1981) Minimization by random search techniques. Math Oper Res 6:19–30

    Article  Google Scholar 

  51. Åqvist J, Medina C, Samuelsson JE (1994) A new method for predicting binding affinity in computer-aided drug design. Protein Eng 7:385–391

    Article  Google Scholar 

  52. Hansson T, Marelius J, Aqvist J (1998) Ligand binding affinity prediction by linear interaction energy methods. J Comput Aided Mol Des 12:27–35

    Article  CAS  Google Scholar 

  53. Wallace AC, Laskowski RA, Thornton JM (1996) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8:127–134

    Article  Google Scholar 

  54. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  CAS  Google Scholar 

  55. Payton M, Gifford C, Schartau P, Hagemeier C, Mushtaq A, Lucas S, Pinter K, Sim E (2001) Evidence towards the role of arylamine N-acetyltransferase in Mycobacterium smegmatis and development of a specific antiserum against the homologous enzyme of Mycobacterium tuberculosis. Microbiology 147:3295–3302

    CAS  Google Scholar 

  56. Payton MA, Sim E (1998) Genotyping human arylamine N-acetyltransferase type 1 (NAT1): the identification of two novel allelic variants. Biochem Pharmacol 55:361–366

    Article  CAS  Google Scholar 

  57. Mushtaq A, Payton M, Sim E (2002) The COOH terminus of arylamine N-acetyltransferase from Salmonella typhimurium controls enzymic activity. J Biol Chem 277:12175–12181

    Article  CAS  Google Scholar 

  58. Delgoda R, Lian LY, Sandy J, Sim E (2003) NMR investigation of the catalytic mechanism of arylamine N-acetyltransferase from Salmonella typhimurium. Biochim Biophys Acta 1620:8–14

    Article  CAS  Google Scholar 

  59. Sikora AL, Frankel BA, Blanchard JS (2008) Kinetic and chemical mechanism of arylamine N-acetyltransferase from Mycobacterium tuberculosis. Biochemistry 47:10781–9

    Article  CAS  Google Scholar 

  60. Aqvist J, Medina C, Samuelsson JE (1994) A new method for predicting binding affinity in computer-aided drug design. Protein Eng 7:385–391

    Article  CAS  Google Scholar 

  61. de Amorim HL, Caceres RA, Netz PA (2008) Linear interaction energy (LIE) method in lead discovery and optimization. Curr Drug Targets 9:1100–1105

    Article  Google Scholar 

  62. Wang JP, Morin P, Wang W, Kollman PAJ (2001) Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. Am Chem Soc 123:5221–5230

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermes Luís Neubauer de Amorim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramos, R.M., Perez, J.M., Baptista, L.A. et al. Interaction of wild type, G68R and L125M isoforms of the arylamine-N-acetyltransferase from Mycobacterium tuberculosis with isoniazid: a computational study on a new possible mechanism of resistance. J Mol Model 18, 4013–4024 (2012). https://doi.org/10.1007/s00894-012-1383-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1383-6

Keywords

Navigation