Skip to main content
Log in

First principles studies of the graphene-phenol interactions

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Studies of the interaction between phenol and intrinsic graphene, as well as phenol and aluminum doped graphene layer are performed using first principles total energy calculations within the periodic density functional theory. A 4x4 periodic structure is used to explore the adsorption of a phenol molecule on the intrinsic graphene and on aluminum doped graphene layer. The electron-ion interactions are modeled using ultra-soft pseudo-potentials, and the exchange-correlation energies are treated according to the generalized gradient approximation (GGA) with the PBE parameterization. We consider different molecule orientations: parallel and perpendicular to the graphene layer to relax the atomic structure. To explain the optimized atomic geometry we determine binding energies for all cases and the density of states (DOS) and partial DOS for the most relevant configurations. Results indicate that the direct interaction of oxygen with aluminum yields the ground state geometry with the phenol molecule adsorbed on the graphene layer. Binding energies and DOS structures also demonstrate that the ground state configuration is that where the O and Al atoms interact with a separation distance of 1.97 Å.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Geim AK, Novoselov KS (2007) Nature Materials 6:183–191

    Article  CAS  Google Scholar 

  2. Ihn T, Güttinger J, Molitor F, Schnez S, Schurtenberger E, Jacobsen A, Hellmüller S, Frey T, Dröscher S, Stampfer C, Ensslin K (2010) Materials Today 13:44–50

    Article  CAS  Google Scholar 

  3. Leenaerts O, Partoens B, Peeters FM (2008) Phys Rev B 77(125416):1–6

    Google Scholar 

  4. Sutter P (2009) Nat Mat 8:171–172

    Article  CAS  Google Scholar 

  5. Young JA (2007) J Chem Educ 84:759

    Article  CAS  Google Scholar 

  6. Fraser CA (1921) J Phys Chem 25:1–9

    Article  CAS  Google Scholar 

  7. Tripathi DG (printed and published) (2008) In: Roy A (ed for and on behalf of Tulip Diagnostics(P) Ltd) J Hyg Sci I(IV):1–16

  8. Tilley FW, Schaffer JM (1926) J Bacteriol 12:303–309

    CAS  Google Scholar 

  9. McDonnell G (1999) Denver Russell A. Clin Microbiol Rev 12:147–179

    CAS  Google Scholar 

  10. Kim KS, Choi SJ, Ihm SK (1983) Ind Eng Chem Fundam 22:167–172

    Article  CAS  Google Scholar 

  11. Hamaidi-Maouche N, Bourouina-Bacha S, Oughlis-Hammache FJ (2009) J Chem Eng Data 54:2874–2880

    Article  CAS  Google Scholar 

  12. Zuo X, Peng C, Huang Q, Song S, Wang L, Li D, Fan C (2009) Nano Res 2:617–623

    Article  CAS  Google Scholar 

  13. Seredych M, Bandosz TJ (2009) Mat Chem and Phys 113:946–952

    Article  CAS  Google Scholar 

  14. Seredych M, Bandosz TJ (2011) Chem Eng J 166:1032–1038

    Article  CAS  Google Scholar 

  15. Chi M, Zhao YP (2009) Comp Mat Sci 46:1085–1090

    Article  CAS  Google Scholar 

  16. Chakarova-Käck SD, Borck Ø, Schröder E, Lundqvist BI (2006) Phys Rev B 74(155402):1–7

    Google Scholar 

  17. Ao ZM, Yang J, Li S, Jiang Q (2008) Chem Phys Lett 461:276–279

    Article  CAS  Google Scholar 

  18. Baroni S, Dal Corso A, de Gironcoli S, Giannozzi P, Cavazzoni C, Ballabio G, Scandolo, S, Chiarotti G, Focher P, Pasquarello A et al (http://www.pwscf.org)

  19. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  20. Sholl DS, Steckel JA (2009) Density Functional Theory, A Practical Introduction, 1st edn. Wiley, New York, p 56

    Google Scholar 

  21. Mao Y, Yuan J, Zhong J (2008) J Phys Condens Mater 20(115209):1–6

    Google Scholar 

  22. Galicia-Hernández JM, Hernández-Cocoletzi G, Chigo-Anota E (2011) J Mol Model. doi:10.1007/s00894-011-1046-z

  23. Leenaerts O, Partoens B, Peeters FM (2009) Phys Rev B 79(235440):1–5

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by projects: Vicerrectoría de Investigación y Estudios de Posgrado - Benemérita Universidad Autónoma de Puebla (CHAE-ING12-G, EXC11-G), Cuerpo Académico Ingeniería en Materiales (BUAP-CA-177), Cuerpo Académico Física Computacional de la Materia Condensada (BUAP-CA-194) and. The work of G.H.C. was partially supported by Consejo Nacional de Ciencia y Tecnología (83982).

The authors would like to acknowledge the National Supercomputer Center (CNS) of Instituto Potosino de Investigación Científica y Tecnológica, Asociación Civil (IPICyT, A. C.) for supercomputer facilities. Calculations have been also performed at the Computer Center of the Instituto de Física “Ing. Luis Rivera Terrazas” – Benemérita Universidad Autónoma de Puebla.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Galicia Hernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández, J.M.G., Anota, E.C., de la Cruz, M.T.R. et al. First principles studies of the graphene-phenol interactions. J Mol Model 18, 3857–3866 (2012). https://doi.org/10.1007/s00894-012-1382-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1382-7

Keywords

Navigation