Skip to main content

Advertisement

Log in

Insights into the mechanisms of the selectivity filter of Escherichia coli aquaporin Z

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Aquaporin Z (AQPZ) is a tetrameric protein that forms water channels in the cell membrane of Escherichia coli. The histidine residue (residue 174) in the selectivity filter (SF) region plays an important role in the transport of water across the membrane. In this work, we perform equilibrium molecular dynamics (MD) simulations to illustrate the gating mechanism of the SF and the influences of residue 174 in two different protonation states: Hsd174 with the proton at Nδ, and Hse174 with the proton at Nε. We calculate the pore radii in the SF region versus the simulation time. We perform steered MD to compute the free-energy profile, i.e., the potential of mean force (PMF) of a water molecule through the SF region. We conduct a quantum mechanics calculation of the binding energy of one water molecule with the residues in the SF region. The hydrogen bonds formed between the side chain of Hsd174 and the side chain of residue 189 (Arg189) play important roles in the selectivity mechanism of AQPZ. The radii of the pores, the hydrogen-bond analysis, and the free energies show that it is easier for water molecules to permeate through the SF region of AQPZ with residue 174 in the Hse state than in the Hsd state.

Free energy profile estimated with the BD-FDT

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Preston GM, Carroll TP, Guggino WB, Agre P (1992) Science 256:385–387

    Article  CAS  Google Scholar 

  2. Borgnia M, Nielsen S, Engel A, Agre P (1999) Annu Rev Biochem 68:425–458

    Article  CAS  Google Scholar 

  3. Agre P, Kozono D (2003) FEBS Lett 555:72–78

    Article  CAS  Google Scholar 

  4. King LS, Kozono D, Agre P (2004) Nat Rev Mol Cell Biol 5:687–698

    Article  CAS  Google Scholar 

  5. Hub JS, Grubmuller H, de Groot BL (2009) Handb Exp Pharmacol 190:57–76

    Google Scholar 

  6. Savage DF, Egea PF, Robles-Colmenares Y, O’Connell JD III, Stroud RM (2003) PLoS Biol 1:E72

  7. Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (2000) Nature 407:599–605

    Article  CAS  Google Scholar 

  8. Sui HX, Han BG, Lee JK, Walian P, Jap BK (2001) Nature 414:872–878

    Article  CAS  Google Scholar 

  9. Fu DX, Libson A, Miercke LJW, Weitzman C, Nollert P, Krucinski J, Stroud RM (2000) Science 290:481–486

    Article  CAS  Google Scholar 

  10. Savage DF, Stroud RM (2007) J Mol Biol 368:607–617

    Article  CAS  Google Scholar 

  11. Savage DF, O’Connell JD III, Miercke LJ, Finer-Moore J, Stroud RM (2010) Proc Natl Acad Sci USA 107:17164–17169

    Article  CAS  Google Scholar 

  12. Jiang JS, Daniels BV, Fu D (2006) J Biol Chem 281:454–460

    Article  CAS  Google Scholar 

  13. Wang Y, Schulten K, Tajkhorshid E (2005) Structure 13:1107–1118

    Article  CAS  Google Scholar 

  14. Jensen MO, Mouritsen OG (2006) Biophys J 90:2270–2284

    Article  CAS  Google Scholar 

  15. Hashido M, Ikeguchi M, Kidera A (2005) FEBS Lett 579:5549–5552

    Article  CAS  Google Scholar 

  16. de Groot BL, Grubmuller H (2001) Science 294:2353–2357

    Article  Google Scholar 

  17. Tajkhorshid E, Nollert P, Jensen MO, Miercke LJ, O’Connell J, Stroud RM, Schulten K (2002) Science 296:525–530

    Article  CAS  Google Scholar 

  18. Jensen MO, Tajkhorshid E, Schulten K (2003) Biophys J 85:2884–2899

    Article  CAS  Google Scholar 

  19. Burykin A, Warshel A (2003) Biophys J 85:3696–3706

    Article  CAS  Google Scholar 

  20. Burykin A, Kato M, Warshel A (2003) Prot Struc Funct Gen 52:412–426

    Article  CAS  Google Scholar 

  21. Kato M, Pisliakov AV, Warshel A (2006) Proteins 64:829–844

    Article  CAS  Google Scholar 

  22. de Groot BL, Grubmuller H (2005) Curr Opin Struct Biol 15:176–183

    Article  Google Scholar 

  23. Chen H, Ilan B, Wu Y, Zhu F, Schulten K, Voth GA (2007) Biophys J 92:46–60

    Article  CAS  Google Scholar 

  24. Wang Y, Shaikh SA, Tajkhorshid E (2010) Physiology (Bethesda) 25:142–154

    Article  CAS  Google Scholar 

  25. Calamita G (2000) Mol Microbiol 37:254–262

    Article  CAS  Google Scholar 

  26. Borgnia MJ, Kozono D, Calamita G, Maloney PC, Agre P (1999) J Mol Biol 291:1169–1179

    Article  CAS  Google Scholar 

  27. Pohl P (2004) Biol Chem 385:921–926

    Article  CAS  Google Scholar 

  28. Vila JA, Arnautova YA, Vorobjev Y, Scheraga HA (2011) Proc Natl Acad Sci USA 108:5602–5607

    Article  CAS  Google Scholar 

  29. Cheng F, Sun H, Zhang Y, Mukkamala D, Oldfield E (2005) J Am Chem Soc 127:12544–12554

    Article  CAS  Google Scholar 

  30. Roberts JD (2000) ABCs of FT-NMR, Sausalito, CA: University Science Books 258–259

  31. Hu F, Luo W, Hong M (2010) Science 330:505–508

    Article  CAS  Google Scholar 

  32. Lu YP, Yang CY, Wang SM (2006) J Am Chem Soc 128:11830–11839

    Article  CAS  Google Scholar 

  33. Duan LL, Tong Y, Mei Y, Zhang QG, Zhang JZH (2007) J Chem Phys 127:145101–145106

    Article  Google Scholar 

  34. Shi SH, Hu GD, Chen JZ, Zhang SL, Zhang QG (2009) Acta Chim Sinica 67:2791–2797

    CAS  Google Scholar 

  35. Sotomayor M, Schulten K (2007) Science 316:1144–1148

    Article  CAS  Google Scholar 

  36. Colizzi F, Perozzo R, Scapozza L, Recanatini M, Cavalli A (2010) J Am Chem Soc 132:7361–7371

    Article  CAS  Google Scholar 

  37. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38, 27-28

    Article  CAS  Google Scholar 

  38. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  39. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  40. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  41. Feller SE, Zhang YH, Pastor RW, Brooks BR (1995) J Chem Phys 103:4613–4621

    Article  CAS  Google Scholar 

  42. Tuckerman M, Berne BJ, Martyna GJ (1992) J Chem Phys 97:1990–2001

    Article  CAS  Google Scholar 

  43. Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  44. Park S, Schulten K (2004) J Chem Phys 120:5946–5961

    Article  CAS  Google Scholar 

  45. Isralewitz B, Baudry J, Gullingsrud J, Kosztin D, Schulten K (2001) J Mol Graph Model 19:13–25

    Article  CAS  Google Scholar 

  46. Chen LY (2008) J Chem Phys 129:144113–144117

    Article  CAS  Google Scholar 

  47. Chen LY, Bastien DA, Espejel HE (2010) Phys Chem Chem Phys 12:6579–6582

    Article  CAS  Google Scholar 

  48. Hu G, Chen LY (2010) Biophys Chem 153:97–103

    Article  CAS  Google Scholar 

  49. Chen LY (2011) Phys Chem Chem Phys 13:6176–6183

    Article  CAS  Google Scholar 

  50. Hirano Y, Okimoto N, Kadohira I, Suematsu M, Yasuoka K, Yasui M (2010) Biophys J 98:1512–1519

    Article  CAS  Google Scholar 

  51. Smart OS, Neduvelil JG, Wang X, Wallace BA, Sansom MSP (1996) J Mol Graph 14:354–360

    Article  CAS  Google Scholar 

  52. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 03, revision C.02, Gaussian Inc., Wallingford

Download references

Acknowledgments

The authors acknowledge support from the National Institutes of Health (grant no. GM084834), the UTSA Computational Biology Initiative, and the Texas Advanced Computing Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, G., Chen, L.Y. & Wang, J. Insights into the mechanisms of the selectivity filter of Escherichia coli aquaporin Z. J Mol Model 18, 3731–3741 (2012). https://doi.org/10.1007/s00894-012-1379-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1379-2

Keywords

Navigation