Skip to main content
Log in

Donor-enhanced bridge effect on the electronic properties of triphenylamine based dyes: density functional theory investigations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The geometries have been optimized by using density functional theory. The highest occupied molecular orbitals are delocalized on triphenylamine moiety while lowest unoccupied molecular orbital are localized on anchoring group. Intramolecular charge transfer has been observed from highest occupied molecular orbitals to lowest unoccupied molecular orbital. By replacing the vinyl hydrogens with methoxy as well as one benzene ring as bridge leads to a raised energy gap while extending the bridge decreases the energy gap compared to parent molecule. The HOMO energies bump up by extending the bridge. The LUMO energies of all the investigated dyes are above the conduction band of TiO2 and HOMOs are below the redox couple except 3c. The distortion between anchoring group and triphenylamine can hamper the recombination reaction.

Triphenylamine based dyes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Regan BO, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  2. Nazeeruddin MK et al (1993) Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) chargetransfer sensitizers (X = Cl–, Br–, I–, CN– and SCN–) on nanocrystalline titanium dioxide electrodes. J Am Chem Soc 115:6382–6390

    Article  CAS  Google Scholar 

  3. Chen J, Too CO, Burrel AK, Collis GE, Officer DL, Wallace GG (2003) Photovoltaic devices based on poly(bisterthiophenes) and substituted poly(bisterthiophene). Synth Met 137:1373–1374

    Article  CAS  Google Scholar 

  4. Smestad G, Bignozzi C, Argazzi R (1994) Testing of dye sensitized TiO2 solar cells I: Experimental photocurrent output and conversion efficiencies. Sol Energy Mater Sol Cells 32:259–272

    Article  CAS  Google Scholar 

  5. Hara K, Sayama K, Ohga Y, Shinpo A, Suga S, Arakawa H (2001) A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%. Chem Commun 6:569–570

    Article  Google Scholar 

  6. Gazotti WA, Girotto EM, Nogueira AF, Paoli MA (2001) Solid-state photoelectrochemical cell using a polythiophene derivative as photoactive electrode. Sol Energy Mater Sol Cells 69:315–323

    Article  CAS  Google Scholar 

  7. Nazeeruddin MK, Pechy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon GB, Bignozzi CA, Grätzel M (2001) Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J Am Chem Soc 123:1613–1624

    Article  CAS  Google Scholar 

  8. Cao F, Oskam G, Searson PC (1995) A solid state, dye sensitized photoelectrochemical cell. J Phys Chem 99:17071–17073

    Article  CAS  Google Scholar 

  9. Matsumoto M, Miyazaki H, Matsuhiro K, Kumashiro Y, Takaoka Y (1996) A dye sensitized TiO2 photoelectrochemical cell constructed with polymer solid electrolyte. Solid State Ionics 89:263–267

    Article  CAS  Google Scholar 

  10. Coakely KM, McGehee MD (2003) Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania. Appl Phys Lett 83:3380–3382

    Article  Google Scholar 

  11. Hara K, Kurashige M, Ito S, Shinpo A, Suga S, Sayama K, Arakawa H (2003) Novel polyene dyes for highly efficient dye-sensitized solar cells. Chem Commun 2:252–253

    Article  Google Scholar 

  12. Liu D, Fessenden RW, Hug GL, Kamat PV (1997) Dye capped semiconductor nanoclusters. Role of back electron transfer in the photosensitization of SnO2 nanocrystallites with cresyl violet aggregates. J Phys Chem B 101:2583–2590

    Article  CAS  Google Scholar 

  13. Burfeindt B, Hannappel T, Storck W, Willig F (1996) Measurement of temperature-independent femtosecond interfacial electron transfer from an anchored molecular electron donor to a semiconductor as acceptor. J Phys Chem 100:16463–16465

    Article  CAS  Google Scholar 

  14. Sayama K, Tsukagochi S, Hara K, Ohga Y, Shinpou A, Abe Y, Suga S, Arakawa H (2002) Photoelectrochemical properties of J aggregates of benzothiazole merocyanine dyes on a nanostructured TiO2 film. J Phys Chem B 106:1363–1371

    Article  CAS  Google Scholar 

  15. Hagfeldt A, Gratzel M (2000) Molecular photovoltaics. Acc Chem Res 33:269–277

    Article  CAS  Google Scholar 

  16. Ning Z, Zhang Q, Wu W, Pei H, Liu B, Tian H (2008) Starburst triarylamine based dyes for efficient dye-sensitized solar cells. J Org Chem 73:3791–3797

    Article  CAS  Google Scholar 

  17. Xu W, Peng B, Chen J, Liang M, Cai F (2008) New triphenylamine-based dyes for dye-sensitized solar cells. J Phys Chem C 112:874–880

    Article  CAS  Google Scholar 

  18. Irfan A, Al-Sehemi AG, Jin RF (2012) Effect of the donor group on the electronic properties of triphenylamine sensitizers. Submitted

  19. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, Revision A.1. Gaussian Inc, Wallingford, CT

  20. Politzer P, Abu-Awwad F (1998) Some approximate Kohn—Sham molecular energy formulas. Mol Phys 95:681–688

    Article  CAS  Google Scholar 

  21. Abu-Awwad F, Politzer P (2000) Variation of parameters in Becke-3 hybrid exchange-correlation functional. J Comput Chem 21:227–238

    Article  CAS  Google Scholar 

  22. Preat J, Jacquemi D, Perpete EA (2010) Design of new triphenylamine-sensitized solar cells: a theoretical approach. Environ Sci Technol 44:5666–5671

    Article  CAS  Google Scholar 

  23. Preat J, Michaux C, Jacquemin D, Perpète EA (2009) Enhanced efficiency of organic dye-sensitized solar cells: Triphenylamine derivatives. J Phys Chem C 113:16821–16833

    Article  CAS  Google Scholar 

  24. Becke AD (1993) A new mixing of Hartree–Fock and local density–functional theories. J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  25. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  26. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  27. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–655

    Article  CAS  Google Scholar 

  28. Irfan A, Al-Sehemi AG (2012) Quantum chemical investigations of electron injection in triphenylamine based sensitizers for dye sensitized solar cells. Submitted

  29. De Oliveira MA, Duarte HA, Pernaut J-M, De Almeida WB (2000) Energy gaps of α, α‘-substituted oligothiophenes from semiempirical, ab initio, and density functional methods. J Phys Chem A 104:8256–8262

    Article  Google Scholar 

  30. Aihara J-i (1999) Reduced HOMO − LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. J Phys Chem A 103:7487–7495

    Article  CAS  Google Scholar 

  31. Kaur I, Jia W, Kopreski RP, Selvarasah S, Dokmeci MR, Pramanik C, McGruer NE, Miller GP (2008) Substituent effects in pentacenes: Gaining control over HOMO − LUMO gaps and photooxidative resistances. J Am Chem Soc 130:16274–16286

    Article  CAS  Google Scholar 

  32. http://www.chemicalforums.com/index.php?topic=47797.0

  33. do Couto PC, Guedes RC, Cabral BJC (2004) The density of states and band gap of liquid water by sequential Monte Carlo/Quantum mechanics calculations. Braz J Phys 34:42–47

    Article  Google Scholar 

  34. Irfan A, Cui RH, Zhang JP, Hao LZ (2009) Push–pull effect on the charge transfer, and tuning of emitting color for disubstituted derivatives of mer-Alq3. Chem Phys 364:39–45

    Article  CAS  Google Scholar 

  35. Balanay MP, Kim DH (2008) DFT/TD-DFT molecular design of porphyrin analogues for use in dye-sensitized solar cells. Phys Chem Chem Phys 10:5121–5127

    Article  CAS  Google Scholar 

  36. De Angelis F, Fantacci S, Selloni A (2008) Alignment of the dye's molecular levels with the TiO2 band edges in dye-sensitized solar cells: a DFT–TDDFT study. Nanotechnology 19:424002–424008

    Article  Google Scholar 

  37. Ito S, Zakeeruddin SM, Humphry-Baker R, Liska P, Charvet R, Comte P, MdK N, Pechy P, Takata M, Miura H, Uchida S, Gratzel M (2006) High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness. Adv Mater 18:1202–1205

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the King Khalid University support and their facilities to carry out the computational work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Irfan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irfan, A., Al-Sehemi, A.G. & Asiri, A.M. Donor-enhanced bridge effect on the electronic properties of triphenylamine based dyes: density functional theory investigations. J Mol Model 18, 3609–3615 (2012). https://doi.org/10.1007/s00894-012-1372-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1372-9

Keywords

Navigation