Skip to main content
Log in

Molecular docking studies of protein-nucleotide complexes using MOLSDOCK (mutually orthogonal Latin squares DOCK)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Understanding the principles of protein receptor recognition, interaction, and association with molecular substrates and inhibitors is of principal importance in the drug discovery process. MOLSDOCK is a molecular docking method that we have recently developed. It uses mutually orthogonal Latin square sampling (together with a variant of the mean field technique) to identify the optimal docking conformation and pose of a small molecule ligand in the appropriate receptor site. Here we report the application of this method to simultaneously identify both the low energy conformation and the one with the best pose in the case of 62 protein-bound nucleotide ligands. The experimental structures of all these complexes are known. We have compared our results with those obtained from two other well-known molecular docking software, viz. AutoDock 4.2.3 and GOLD 5.1. The results show that the MOLSDOCK method was able to sample a wide range of binding modes for these ligands and also scores them well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shoichet BK, Kuntz ID (1996) Predicting the structure of protein complexes: a step in the right direction. Chem Biol 3:151–156

    Article  CAS  Google Scholar 

  2. Klebe G (2000) Recent developments in structure-based drug design. J Mol Med 78:269–281

    Article  CAS  Google Scholar 

  3. Lybrand TP (1995) Ligand-protein docking and rational drug design. Curr Opin Struct Biol 5:224–228

    Article  CAS  Google Scholar 

  4. Lengauer T, Rarey M (1996) Computational methods for biomolecular docking. Curr Opin Struct Biol 6:402–406

    Article  CAS  Google Scholar 

  5. Huang SY, Zou X (2010) Advances and challenges in protein-ligand docking. Int J Mol Sci 11:3016–3034

    Article  CAS  Google Scholar 

  6. Bissantz C, Folkers G, Rognan D (2000) Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. J Med Chem 43:4759–4767

    Article  CAS  Google Scholar 

  7. Kontyianni M, McClellan LM, Slkol GS (2004) Evaluation of docking performance: comparative data on docking algorithms. J Med Chem 47:558–565

    Article  Google Scholar 

  8. Glick M, Rayan A, Goldblum A (2002) A stochastic algorithm for global optimization and for best populations: A test case of side chains in proteins. Proc Natl Acad Sci USA 99:703–708

    Article  CAS  Google Scholar 

  9. Pappu RV, Hart RK, Ponder JW (1998) Analysis and application of potential energy smoothing and search methods for global optimization. J Phys Chem B 102:9725–9742

    Article  CAS  Google Scholar 

  10. Nair N, Goodman JM (1998) Genetic algorithms in conformational analysis. J Chem Inf Comput Sci 38:317–320

    CAS  Google Scholar 

  11. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  12. Rarey M, Kramer B, Lengauer T, Klebe G (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261:470–489

    Article  CAS  Google Scholar 

  13. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  CAS  Google Scholar 

  14. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  Google Scholar 

  15. Makino S, Kuntz ID (1997) Automated flexible ligand docking method and its application for database search. J Comput Chem 18:1812–1825

    Article  CAS  Google Scholar 

  16. Vengadesan K, Gautham N (2003) Enhanced sampling of the molecular potential energy surface using mutually orthogonal Latin squares: application to peptide structures. Biophys J 84:2897–2906

    Article  CAS  Google Scholar 

  17. Vengadesan K, Gautham N (2004) Conformational studies on Enkephalins using the MOLS technique. Biopolymers 74:476–494

    Article  CAS  Google Scholar 

  18. Vengadesan K, Gautham N (2004) An application of experimental design using mutually orthogonal Latin squares in conformational studies of peptides. Biochem Biophys Res Commun 316:731–737

    Article  CAS  Google Scholar 

  19. Prasad PA, Gautham N (2008) A new peptide docking strategy using a mean field technique with mutually orthogonal Latin square sampling. J Comput Aided Mol Des 22:815–829

    Article  Google Scholar 

  20. Viji SN, Prasad PA, Gautham N (2009) Protein-ligand docking using mutually orthogonal Latin squares (MOLSDOCK). J Chem Inf Model 49:2687–2694

    Article  CAS  Google Scholar 

  21. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  22. Gehlhaar DK, Verkhivker GM, Rejto PA, Sherman CJ, Fogel DB, Fogel LJ, Freer ST (1995) Molecular recognition of the inhibitor AC-1343 by HIV-l protease: conformationally flexible docking by evolutionary programming. Chem Biol 2:317–324

    Article  CAS  Google Scholar 

  23. Wang R, Lu Y, Wang S (2003) Comparative evaluation of 11 scoring functions for molecular docking. J Med Chem 46:2287–2303

    Article  CAS  Google Scholar 

  24. Wang R, Lu Y, Fang X, Wang S (2004) An extensive test of 14 scoring functions using the PDBbind refined set of 800 protein-ligand complexes. J Chem Inf Comput Sci 44:2114–2125

    CAS  Google Scholar 

  25. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  26. Wittinghofer A (1992) Three-dimensional structure of p21H-ras and its implications. Cancer Biol 3:189–198

    CAS  Google Scholar 

  27. Biosym/MSI Release 95.0 (1995) San Diego, CA 92121 – 3752, USA

  28. Andrusier N, Mashiach E, Nussinov R, Wolfson HJ (2008) Principles of flexible protein-protein docking. Proteins 73:271–289

    Article  CAS  Google Scholar 

  29. Dean PM, Poornima CS (1995) Hydration in drug design. 1. Multiple hydrogen-bonding features of water molecules in mediating protein–ligand interactions. J Comput Aided Mol Des 9:500–512

    Article  Google Scholar 

  30. Rosenfeld RJ, Goodsell DS, Musah RA, Morris GM, Goodin DB, Olson AJ (2003) Automated docking of ligands to an artificial active site: augmenting crystallographic analysis with computer modeling. J Comput Aided Mol Des 17:525–536

    Article  CAS  Google Scholar 

  31. Gohlke H, Hendlich M, Klebe G (2000) Knowledge-based scoring function to predict protein-ligand interactions. J Mol Biol 295:337–356

    Article  CAS  Google Scholar 

  32. Abagyan RA, Totrov MM (1997) Contact area difference (CAD): A robust measure to evaluate accuracy of protein models. J Mol Biol 268:678–685

    Article  CAS  Google Scholar 

  33. Moliner ED, Brown NR, Johnson LN (2003) Alternative binding modes of an inhibitor to two different kinases. Eur J Biochem 270:3174–3181

    Article  Google Scholar 

  34. Teplyakov A, Sebastiao P, Obmolova G, Perrakis A, Brush GS, Bessman MJ, Wilson KS (1996) Crystal structure of bacteriophage T4 deoxynucleotide kinase with its substrates dGMP and ATP. EMBO J 15:3487–3497

    CAS  Google Scholar 

  35. Taylor RD, Jewsbury PJ, Essex JW (2003) FDS: Flexible ligand and receptor docking with a continuum solvent model and soft-core energy function. J Comput Chem 24:1637–1656

    Article  CAS  Google Scholar 

  36. Jelakovic S, Schulz GE (2001) The structure of CMP: 2-keto-3-deoxy-manno-octonic acid synthetase and of its complexes with substrates and substrate analogs. J Mol Biol 312:143–155

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the University Grants Commission, and the Department of Science and Technology, Government of India for support under the Centre of Advanced Study (CAS) program and the Fund for Improvement of S&T Infrastructure (FIST) program, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namasivayam Gautham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viji, S.N., Balaji, N. & Gautham, N. Molecular docking studies of protein-nucleotide complexes using MOLSDOCK (mutually orthogonal Latin squares DOCK). J Mol Model 18, 3705–3722 (2012). https://doi.org/10.1007/s00894-012-1369-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1369-4

Keywords

Navigation