Skip to main content
Log in

Theoretical studies on all-metal binuclear sandwich-like complexes M24-E4)2 (M=Al, Ga, In; E=Sb, Bi)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A series of all-metal binuclear sandwich-like complexes with the formula M24-E4)2 (M=Al, Ga, In; E=Sb, Bi) was studied by density functional theory (DFT). The most stable conformer for each of the M24-E4)2 species is the staggered one with D 4d symmetry. The centred metal–metal bond in each M24-E4)2 species is a covalent single bond, with the main contributors to these covalent bonds being the a1 and e orbitals. For all these species, the interactions between the centred metal atoms and the all-metal ligands are covalent; η4-Sb 2−4 has a stronger ability to stabilize metal–metal bonds than η4-Bi 2−4 . Nucleus-independent chemical shifts (NICS) values and molecular orbital (MO) analysis reveal that the all-metal η4-Sb 2-4 and η4-Bi 2-4 ligands in M24-E4)2 possess conflicting aromaticity (σ antiaromaticity and π aromaticity), which differs from the all-metal multiple aromatic unit Al 2−4 . In addition, all of these M24-E4)2 species are stable according to the dissociation energies of M24-E4)2 → 2 M(η4-E4) and M24-E4)2 → 2 M + 2E4, and these stable species can be synthesized by two-step substitution reactions: CpZnZnCp + 2E 2−4  → [E4ZnZnE4]2− + 2Cp and [E4ZnZnE4]2− + 2 M +2  → E4MME4 + 2Zn+.

Molecular structures for M24-E4)2(M=Al, Ga, In; E=Sb, Bi)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kealy TJ, Pauson PL (1961) Nature 168:1039–1040

    Article  Google Scholar 

  2. Rogers RD, Atwood JL, Foust D, Rauch MD (1981) J Cryst And Mol Struc 11:183–188

    Article  CAS  Google Scholar 

  3. Flower KR, Hitchcock PB (1996) J Organomet Chem 507:275–277

    Article  CAS  Google Scholar 

  4. Bunder W, Weiss E (1975) J Organomet Chem 92:65–68

    Article  Google Scholar 

  5. Seiler P, Dunitz JD (1980) Acta Cryst Sect B 36:2255–2260

    Article  Google Scholar 

  6. Fischer EO, Hofmann HP (1959) Chem Ber 92:482–486

    Article  CAS  Google Scholar 

  7. Fischer EO, Grubert HZ (1956) Z Anorg Allg Chem 286:237–242

    Article  CAS  Google Scholar 

  8. Resa I, Carmona E, Gutierrez-Puebla E, Monge A (2004) Science 305:1136–1138

    Article  CAS  Google Scholar 

  9. Xie ZZ, Fang WH (2005) Chem Phys Lett 404:212–216

    Article  CAS  Google Scholar 

  10. Xie YM, Schaefer HF III, Jemmis ED (2005) Chem Phys Lett 402:414–421

    Article  CAS  Google Scholar 

  11. Luhl A, Nayek HP, Blechert S, Roesky PW (2011) Chem Commun 47:8280–8282

    Article  Google Scholar 

  12. Schulz S, Schuchmann D, Westphal U, Bolte M (2009) Organometallics 28:1590–1592

    Article  CAS  Google Scholar 

  13. Zhu H, Chen Y, Li S, Yang X, Liu Y (2011) Int J Hydrogen Energy 36:11810–11814

    Article  CAS  Google Scholar 

  14. Janiak C, Schumann H (1991) Adv Organomet Chem 33:291–393

    Article  CAS  Google Scholar 

  15. Li X, Kuznetsov AE, Zhang H-F, Boldyrev AI, Wang L-S (2001) Science 291:859–861

    Article  CAS  Google Scholar 

  16. Mercero JM, Formoso E, Matxain JM, Eriksson LA, Ugalde JM (2006) Chem Eur J 12:4495–4502

    Article  CAS  Google Scholar 

  17. Yang L-M, Ding Y-H, Sun C-C (2007) Chem Eur J 13:2546–2555

    Article  CAS  Google Scholar 

  18. Boldyrev AI, Wang LS (2005) Chem Rev 105:3716–3757

    Article  CAS  Google Scholar 

  19. Critchlow SC, Corbett JD (1984) Inorg Chem 23:770–774

    Article  CAS  Google Scholar 

  20. Cisar A, Corbett JD (1977) Inorg Chem 16:2482–2487

    Article  CAS  Google Scholar 

  21. Kuznetsov AE, Zhai H-J, Wang L-S, Boldyrev AI (2002) Inorg Chem 41:6062–6070

    Article  CAS  Google Scholar 

  22. Li ZW, Wu WS, Li SH (2009) J Mol Struct (THEOCHEM) 908:73–78

    Article  CAS  Google Scholar 

  23. Li ZW, Zhao CY, Chen LP (2007) J Theor Comput Chem 6:363–376

    Article  CAS  Google Scholar 

  24. Wang C, Zhang X, Ge M, Li Q (2011) New J Chem 35:2527–2533

    Article  CAS  Google Scholar 

  25. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  26. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–790

    Article  CAS  Google Scholar 

  27. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  28. Perdew JP (1986) Phys Rev B 33:8822–8824

    Article  Google Scholar 

  29. McLean AD, Chandler GS (1980) J Chem Phys 72:5639–5648

    Article  CAS  Google Scholar 

  30. Frisch MJ, Plple JA, Binkley JS (1984) J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  31. Dolg M, Stoll H, Preuss H (1993) Theor Chim Acta 6:441–450

    Article  Google Scholar 

  32. Bergner A, Dolg M, Kuechle W, Stoll H, Preuss H (1993) Mol Phys 6:1431–1441

    Article  Google Scholar 

  33. Carpenter JE, Weinhold F (1988) J Mol Struct (THEOCHEM) 169:41–62

    Article  Google Scholar 

  34. Foster JP, Weinhold FJ (1980) J Am Chem Soc 24:7211–7218

    Article  Google Scholar 

  35. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  36. Reed AE, Curtiss LA, Weinhold F (1986) Chem Rev 6:899–926

    Google Scholar 

  37. Wolinski K, Hilton JF, Pulay P (1990) J Am Chem Soc 23:8251–8260

    Article  Google Scholar 

  38. Schreckenbach G, Ziegler T (1995) J Phys Chem 2:606–611

    Article  Google Scholar 

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery J A, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Cossi, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.03. Gaussian Inc, Pittsburgh PA

  40. te Velde G, Bickelhaupt FM, van Gisbergen SJA, Guerra CF, Baerends EJ, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967

    Article  Google Scholar 

  41. Guerra CF, Snijders JG, te Velde G, Baerends EJ (1998) Theor Chem Acc 99:391–403

    CAS  Google Scholar 

  42. ADF2010, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com

  43. Chang C, Pelissier M, Durand Ph (1986) Phys Scr 34:394–404

    Article  CAS  Google Scholar 

  44. Heully JL, Lindgren I, Lindroth E, Lundquist S, Martensson-Pendrill AM (1986) J Phys B 19:2799–2815

    Article  CAS  Google Scholar 

  45. van Lenthe E, Baerends EJ, Snijders JG (1993) J Chem Phys 99:4597–4610

    Article  Google Scholar 

  46. van Lenthe E, Baerends EJ, Snijders JG (1996) J Chem Phys 105:6505–6516

    Article  Google Scholar 

  47. van Lenthe E, van Leeuwen R, Baerends EJ, Snijders JG (1996) Int J Quantum Chem 57:281–293

    Article  Google Scholar 

  48. van Lenthe E, Ehlers AE, Baerends EJ (1999) J Chem Phys 110:8943–8953

    Article  Google Scholar 

  49. Diefenbach A, Bickelhaupt FM, Frenking G (2000) J Am Chem Soc 122:6449–6458

    Article  CAS  Google Scholar 

  50. Uddin J, Frenking G (2001) J Am Chem Soc 123:1683–1693

    Article  CAS  Google Scholar 

  51. Pandey KK, Lein M, Frenking G (2003) J Am Chem Soc 125:1660–1668

    Article  CAS  Google Scholar 

  52. Xu ZF, Xie YM, Feng WL, Schaefer HF (2003) J Phys Chem A 107:2716–2729

    Article  CAS  Google Scholar 

  53. Uhl W (1988) Z Naturforsch B: Chem Sci 43b:1113–1118

    Google Scholar 

  54. Uhl W, Layh M, Hildenbrand T (1989) J Organomet Chem 364:289–300

    Article  CAS  Google Scholar 

  55. Wang YZ, Robinson GH (2007) Organometallics 26:2–11

    Article  CAS  Google Scholar 

  56. Rio Dd, Galindo A, Resa I, Carmona E (2005) Angew Chem Int Ed Engl 44:1244

    Article  Google Scholar 

  57. Krygowski TM, Cyrañski MK, Czarnocki Z, Hafelinger G, Katritzky AR (2000) Tetrahedron 56:1783–1796

    Article  CAS  Google Scholar 

  58. Cyran.ski MK, Krygowski TM, Katritzky AR, Schleyer PvR (2002) J Org Chem 4:1333–1338

    Article  Google Scholar 

  59. Eluvathingal DJ, Boggavarapu K (1998) Inorg Chem 37:2110–2116

    Article  Google Scholar 

  60. Krygowski TM (1993) J Chem Inf Comput Sci 33:70–78

    Article  CAS  Google Scholar 

  61. Goldfuss B, Schleyer PvR, Schleyer PvR, Hampel F (1996) Organometallics 7:1755–1757

    Article  Google Scholar 

  62. Glukhovtsev MJ (1997) Chem Educ 74:132–136

    Article  CAS  Google Scholar 

  63. Schleyer PvR, Maerker C, Dransfeld A, Jiao HJ, van Eikema Hommes NJR (1996) J Am Chem Soc 26:6317–6318

    Article  Google Scholar 

  64. Schleyer PvR, Najafian K, Kiran B, Jiao HJ (2000) Org Chem 65:426–431

    Article  CAS  Google Scholar 

  65. Scheleyer PvR, Manoharan M, Wang ZX, Kiran B, Jiao HJ, Puchta R, van Eikema Hommes NJR (2001) Org Lett 3:2465–2468

    Article  Google Scholar 

  66. Corminboeuf C, Heine T, Seifert G, Schleyer PvR, Weber J (2004) Phys Chem Chem Phys 6:273–276

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to the Chinese National Natural Science Foundation (20903010), Research Fund for the Doctoral Program of Higher Education (200800071019), and Project of State Key Laboratory of Explosion Science of Technology (Beijing Institute of Technology) (2DkT10-01a).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiuhui Zhang or Qianshu Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Zhang, X., Lu, J. et al. Theoretical studies on all-metal binuclear sandwich-like complexes M24-E4)2 (M=Al, Ga, In; E=Sb, Bi). J Mol Model 18, 3577–3586 (2012). https://doi.org/10.1007/s00894-012-1362-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1362-y

Keywords

Navigation