Journal of Molecular Modeling

, Volume 18, Issue 8, pp 3751–3768 | Cite as

Odd-electron molecular theory of graphene hydrogenation

Original Paper

Abstract

This paper highlights the molecular essence of graphene and presents its hydrogenation from the viewpoint of the odd-electron molecular theory. This chemical transformation was performed computationally, using a particular algorithm, through the stepwise addition of either hydrogen molecules or hydrogen atoms to a pristine graphene molecule. The graphene was considered to be a membrane, such that either both sides or just one side of the membrane was accessible to adsorbate, and the atoms on the perimeter of the membrane were either fixed (fixed membrane) or free to move (free-standing membrane). The algorithm explored the spatial distribution of the number of effectively unpaired electrons NDA over the carbon skeleton of the molecule. The highest ranked NDA values were considered to indicate the target atoms at each reaction step. The dependence of the hydrogenation itself and the final graphene hydrides on external factors such as whether the membrane was fixed, if both sides or only one side of the membrane were accessible to hydrogen, and whether the hydrogen was in the molecular or atomic state. Complete hydrogenation followed by the formation of a regular chairlike graphane structure (CH)n was only found to be possible for a fixed pristine graphene membrane for which the basal plane is accessible to hydrogen atoms from both sides.

Keywords

Hydrogenation Graphene Graphane Cyclohexane Isomers Quantum chemistry Unrestricted broken symmetry approach Atom chemical susceptibility 

References

  1. 1.
    Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2009) Science 323:610–613CrossRefGoogle Scholar
  2. 2.
    Romanchemko V (2009) 3D News: Daily Digital Digest http://www.3dnews.ru/editorial/it-graphane
  3. 3.
    Dresselhaus MS, Araujo PT (2010) ACS Nano 4:6297–6302CrossRefGoogle Scholar
  4. 4.
    Chakraborty T (2010) Phys Can 66:289–291Google Scholar
  5. 5.
    Quintana M, Spyrou K, Grzelczak M, Browne WR, Rudolf P, Prato M (2010) ACS Nano 4:3527–3533CrossRefGoogle Scholar
  6. 6.
    Balog R, Jørgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Lægsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen TG, Hofmann P, Hornekær L (2010) Nat Mater 9:315–319CrossRefGoogle Scholar
  7. 7.
    Lee J-H, Grossman JC (2010) Appl Phys Lett 97:133102CrossRefGoogle Scholar
  8. 8.
    Zhou J, Wang Q, Sun Q, Chen XS, Kawazoe Y, Jena P (2009) Nano Lett 9:3867–3870CrossRefGoogle Scholar
  9. 9.
    Savini G, Ferrari AC, Giustino F (2010) Phys Rev Lett 105:037002CrossRefGoogle Scholar
  10. 10.
    Cudazzo P, Attaccalite C, Tokatly IV, Rubio A (2010) Phys Rev Lett 104:226804CrossRefGoogle Scholar
  11. 11.
    Crassee I, Levallois J, Walter AL, Ostler M, Bostwick A, Rotenberg E, Seyller T, van der Marel D, Kuzmenko AB (2011) Nat Phys 7:48–51CrossRefGoogle Scholar
  12. 12.
    Singh AK, Penev ES, Yakobson BI (2010) ACS Nano 4:3510–3514CrossRefGoogle Scholar
  13. 13.
    Muñoz E, Singh AK, Ribas MA, Penev ES, Yakobson BI (2010) Diam Rel Mat 19:368–373CrossRefGoogle Scholar
  14. 14.
    Topsakal M, Cahangirov S, Ciraci S (2010) Appl Phys Lett 96:091912CrossRefGoogle Scholar
  15. 15.
    Pei QX, Zhang YW, Shenoy VB (2010) Carbon 48:898–904CrossRefGoogle Scholar
  16. 16.
    Openov LA, Podlivaev AI (2010) JETP Lett 90:459–463CrossRefGoogle Scholar
  17. 17.
    Openov LA, Podlivaev AI (2010) Tech Phys Lett 36:31–33CrossRefGoogle Scholar
  18. 18.
    Schmidt MJ, Loss D (2010) Phys Rev B 82:085422CrossRefGoogle Scholar
  19. 19.
    Culchac FJ, Latgé A, Costa AT (2011) New J Phys 13:033028CrossRefGoogle Scholar
  20. 20.
    AlZahrania AZ, Srivastava GP (2010) Appl Surf Sci 256:5783–5788CrossRefGoogle Scholar
  21. 21.
    Leenaerts O, Peelaers H, Hernandez-Nieves AD, Partoens B, Peeters FM (2010) Phys Rev B 82:195436CrossRefGoogle Scholar
  22. 22.
    Bhattacharya A, Bhattacharya S, Majumder C, Das GP (2011) Phys Rev B 83:033404CrossRefGoogle Scholar
  23. 23.
    Sahin H, Ataca C, Ciraci S (2010) Phys Rev B 81:205417CrossRefGoogle Scholar
  24. 24.
    Ju W, Wang H, Li T, Fu ZH, Zhang Q (2010) Key Eng Mater 434–435:803–804CrossRefGoogle Scholar
  25. 25.
    Cheng SH, Zou K, Okino F, Gutierres HR, Gupta A, Shen N, Eklund PC, Sofo JO, Zhu J (2010) Phys Rev B 81:205435CrossRefGoogle Scholar
  26. 26.
    Nair RR, Ren WC, Jalil R, Riaz I, Kravets VG, Britnell L, Blake P, Schedin F, Mayorov AS, Yuan S, Katsnelson MI, Cheng HM, Strupinski W, Bulusheva LG, Okotrub AV, Grigorieva LV, Grigorenko AN, Novoselov KS, Geim AK (2010) Small 6:2877–2884CrossRefGoogle Scholar
  27. 27.
    Zboril R, Karlicky F, Bourlinos AB, Steriotis TA, Stubos AK, Georgakilas V, Safárová K, Jancík D, Trapalis C, Otyepka M (2010) Small 6:2885–2891CrossRefGoogle Scholar
  28. 28.
    Rosas JJH, Gutiérrez RER, Escobedo-Morales A, Chigo Anota E (2011) J Mol Model 17:1133–1139CrossRefGoogle Scholar
  29. 29.
    Loh KP, Bao Q, Ang PK, Yang J (2010) J Mat Chem 20:2277–2289CrossRefGoogle Scholar
  30. 30.
    van den Brink J (2010) Nat Mater 9:91–292Google Scholar
  31. 31.
    Abergel DSL, Apalkov V, Berashevich J, Ziegler K, Chakraborty T (2010) Adv Phys 59:261–282CrossRefGoogle Scholar
  32. 32.
    Allouche A, Jelea A, Marinelli F, Ferro Y (2006) Phys Scr T124:91–95CrossRefGoogle Scholar
  33. 33.
    Sheka EF, Chernozatonskii LA (2010) Int J Quantum Chem 110:1466–1480Google Scholar
  34. 34.
    Sheka EF, Chernozatonskii LA (2010) J Exp Theor Phys 110:121–132CrossRefGoogle Scholar
  35. 35.
    Sheka EF, Chernozatonskii LA (2010) Int J Quantum Chem 110:1938–1946Google Scholar
  36. 36.
    Sheka EF, Chernozatonskii LA (2009) Nanostruct Mat Phys Model 1:115–149Google Scholar
  37. 37.
    Sheka EF (2012) arXiv 1201.5388v1 [condmat. mtrl-sci] Computational strategy for graphene: insight from odd electrons correlationGoogle Scholar
  38. 38.
    Sheka EF, Chernozatonskii LA (2010) J Theor Comput Nanosci 7:1814–1824CrossRefGoogle Scholar
  39. 39.
    Sheka EF, Shaymardanova LKH (2011) J Mat Chem 21:17128–17146CrossRefGoogle Scholar
  40. 40.
    Sheka EF, Popova NA, Popova VA, Nikitina EA, Shaymardanova LKH (2011) J Mol Model 17:1121–1131CrossRefGoogle Scholar
  41. 41.
    Sheka EF, Popova NA, Popova VA, Nikitina EA, Shaymardanova LKH (2011) J Exp Theor Phys 112:602–611CrossRefGoogle Scholar
  42. 42.
    Sheka EF, Popova NA (2011) J Phys Chem C 115:23745–23754CrossRefGoogle Scholar
  43. 43.
    Jeloaica L, Sidis V (1999) Chem Phys Lett 300:157–163CrossRefGoogle Scholar
  44. 44.
    Sha X, Jackson B (2002) Surf Sci 496:318–330CrossRefGoogle Scholar
  45. 45.
    Hornekær L, Sljivancanin ZS, Xu W, Otero R, Rauls E, Stensgaard I, Lægsgaard E, Hammer B, Besenbacher F (2006) Phys Rev Lett 96:156104CrossRefGoogle Scholar
  46. 46.
    Ito A, Nakamure H, Takayama A (2008) J Phys Soc Jpn 77:114602CrossRefGoogle Scholar
  47. 47.
    Casolo S, Lovvik OM, Martinazzo R, Tantardini GF (2009) J Chem Phys 130:054704CrossRefGoogle Scholar
  48. 48.
    Flores MZS, Autreto PAS, Legoas SB, Galvao S (2009) Nanotechnology 20:465704CrossRefGoogle Scholar
  49. 49.
    Rüdorff W (1959) Adv Inorg Chem 1:223–266CrossRefGoogle Scholar
  50. 50.
    Charlier J-C, Gonze X, Michenaud J-P (1993) Phys Rev B 47:16162–16168CrossRefGoogle Scholar
  51. 51.
    Ebbert LB, Brauman JI, Huggins RA (1974) J Am Chem Soc 96:7841–7842CrossRefGoogle Scholar
  52. 52.
    Boltalina OV, Bühl M, Khong A, Saunders M, Street JM, Taylor R (1999) J Chem Soc Perkin Trans 2:1475–1479Google Scholar
  53. 53.
    Taylor R (2004) J Fluor Chem 125:359–368CrossRefGoogle Scholar
  54. 54.
    Sofo JO, Chaudhari AS, Barber GD (2007) Phys Rev B 75:153401CrossRefGoogle Scholar
  55. 55.
    Sheka EF (2011) Fullerene nanoscience: nanochemistry, nanomedicine, nanophotonics, nanomagnetism. CRC, Boca RatonGoogle Scholar
  56. 56.
    Sheka EF (2010) J Exp Theor Phys 111:395–412CrossRefGoogle Scholar
  57. 57.
    Sheka EF (2011) J Mol Model 17:1973–1984CrossRefGoogle Scholar
  58. 58.
    Sheka EF (2007) Int J Quantum Chem 107:2803–2816CrossRefGoogle Scholar
  59. 59.
    Sheka EF (2011) J Mol Model. doi:10.1007/s00894-011-1158-5
  60. 60.
    Zayets VA (1990) CLUSTER-Z1: quantum-chemical software for calculations in the s,p-basis. Institute of Surface Chemistry, National Academy of Sciences, KievGoogle Scholar
  61. 61.
    Berzigiyarov PK, Zayets VA, Ginzburg IY, Razumov VF, Sheka EF (2002) Int J Quantum Chem 88:449–464CrossRefGoogle Scholar
  62. 62.
    Gao X, Zhou Z, Zhao Y, Nagase S, Zhang SB, Chen Z (2008) J Phys Chem A 112:12677–12682Google Scholar
  63. 63.
    Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Phys Rev B 54:17954–17961CrossRefGoogle Scholar
  64. 64.
    Lain L, Torre A, Alcoba DR, Bochicchio RC (2011) Theor Chem Acc 128:405–410CrossRefGoogle Scholar
  65. 65.
    Meyer JC, Girit CO, Crommie MF, Zettl A (2008) Nature 454:319–322CrossRefGoogle Scholar
  66. 66.
    Nechaev YS (2011) Open Fuel Cells J 4:16–29Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Peoples’ Friendship University of RussiaMoscowRussia

Personalised recommendations