Journal of Molecular Modeling

, Volume 18, Issue 7, pp 3363–3378 | Cite as

Molecular simulations of adsorption of RDX and TATP on IRMOF-1(Be)

  • Andrea Michalkova Scott
  • Tetyana Petrova
  • Khorgolkhuu Odbadrakh
  • Donald M. Nicholson
  • Miguel Fuentes-Cabrera
  • James P. Lewis
  • Frances C. Hill
  • Jerzy Leszczynski
Original Paper

Abstract

The influence of different sorption sites of isoreticular metal-organic frameworks (IRMOFs) on interactions with explosive molecules is investigated. Different connector effects are taken into account by choosing IRMOF-1(Be) (IRMOF-1 with Zn replaced by Be), and two high explosive molecules: 1,3,5-trinitro-s-triazine (RDX) and triacetone triperoxide (TATP). The key interaction features (structural, electronic and energetic) of selected contaminants were analyzed by means of density functional calculations. The interaction of RDX and TATP with different IRMOF-1(Be) fragments is studied. The results show that physisorption is favored and occurs due to hydrogen bonding, which involves the C-H groups of both molecules and the carbonyl oxygen atoms of IRMOF-1(Be). Additional stabilization of RDX and TATP arises from weak electrostatic interactions. Interaction with IRMOF-1(Be) fragments leads to polarization of the target molecules. Of the molecular configurations we have studied, the Be-O-C cluster connected with six benzene linkers (1,4-benzenedicarboxylate, BDC), possesses the highest binding energy for the studied explosives (-16.4 kcal mol-1 for RDX and -12.9 kcal mol-1 for TATP). The main difference was discovered to be in the preferable adsorption site for adsorbates (RDX above the small and TATP placed above the big cage). Based on these results, IRMOF-1 can be suggested as an effective material for storage and also for separation of similar explosives. Hydration destabilizes most of the studied adsorption systems by 1-3 kcal mol-1 but it leads to the same trend in the binding strength as found for the non-hydrated complexes.

Figure

RDX adsorbed on IRMOF-1(Be) (B97-D/6-31G(d))

Keywords

Adsorption B97-D IRMOF-1 RDX TATP 

References

  1. 1.
    Hiyoshi RI, Nakamura J, Brill TB (2007) Propellants, explosives. Pyrotechnics 32:127–134CrossRefGoogle Scholar
  2. 2.
    Kaye SM (ed) (1978) Encyclopedia of explosives and related items. PATR 2700 Vol. 8. U.S. Army Armament Research & Devlop. Comp: Dover, NJ, 203Google Scholar
  3. 3.
    Hon DNS (1985) Pulp & Paper Canada 1985, 86:129–131Google Scholar
  4. 4.
    Reutter DJ, Bender ED, Rudolph RL (1983) Proceed Int Symp Analysis & Detection of Explosives. U.S. Dept. Justice. FBI, Quantico, VA, p 149Google Scholar
  5. 5.
    Zitrin S, Kraus S, Glattstein B (1983) Proceed Int Symp Analysis & Detection of Explosives, US Dept. Justice. FBI, Quantico, VA, p 137Google Scholar
  6. 6.
    Swadley MJ, Li T (2007) J Chem Theor Comput 3:505–513CrossRefGoogle Scholar
  7. 7.
    Chakraborty D, Muller RP, Dasgupta S, Goddard WA (2000) J Phys Chem A 104:2261–2272CrossRefGoogle Scholar
  8. 8.
    Boyd S, Gravelle M, Politzer P (2006) J Chem Phys 124:104508–104517CrossRefGoogle Scholar
  9. 9.
    Harris NJ, Lammertsma K (1997) J Am Chem Soc 119:6583–6589CrossRefGoogle Scholar
  10. 10.
    Rice BM, Chabalowski CF (1997) J Phys Chem A 101:8720–8726CrossRefGoogle Scholar
  11. 11.
    Chae HK, Siberio-Perez DY, Kim J, Go Y, Eddaoudi M, Matzger AJ, O’Keeffe M, Yaghi OM (2004) Nature 427:523–527CrossRefGoogle Scholar
  12. 12.
    Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keefe M, Yaghi OM (2002) Science 295:469–472CrossRefGoogle Scholar
  13. 13.
    Huang L, Wang H, Chen J, Wang Z, Sun J, Zhao D, Yan Y (2003) Microporous Mesoporous Mater 58:105–114CrossRefGoogle Scholar
  14. 14.
    Kepert CJ, Rosseinsky MJ (1999) J Chem Soc Chem Commun 4:375–376Google Scholar
  15. 15.
    Tafipolsky M, Amirjalayer S, Schmid R (2007) J Comput Chem 28:1169–1176CrossRefGoogle Scholar
  16. 16.
    Mattesini M, Soler J, Yndurain F (2006) Phys Rev B 73:094111–094112CrossRefGoogle Scholar
  17. 17.
    Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Nature 402:276–279CrossRefGoogle Scholar
  18. 18.
    Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Science 300:1127–1129CrossRefGoogle Scholar
  19. 19.
    Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Nature 423:705–714CrossRefGoogle Scholar
  20. 20.
    Fuentes-Cabrera M, Nicholson DM, Sumpter BG, Widom M (2005) J Chem Phys 123:124713–124715CrossRefGoogle Scholar
  21. 21.
    Hausdorf S, Baitalow F, Bohle T, Rafaja D, Mertens FORL (2010) J Am Chem Soc 132:10978–10981CrossRefGoogle Scholar
  22. 22.
    Sagara T, Klassen J, Ganz E (2004) J Chem Phys 121:12543–12547CrossRefGoogle Scholar
  23. 23.
    Bordiga S, Vitillo JG, Ricchiardi G, Regli L, Cocina D, Zecchina A, Arstad B, Bjørgen M, Hafizovic J, Lillerud KP (2005) J Phys Chem B 109:18237–18242CrossRefGoogle Scholar
  24. 24.
    Yang QY, Zhong CL (2005) J Phys Chem B 109:11862–11864CrossRefGoogle Scholar
  25. 25.
    Belof JL, Stern AC, Eddaoudi M, Space B (2007) J Am Chem Soc 129:15202–15210CrossRefGoogle Scholar
  26. 26.
    Han SS, Goddard WA III (2007) J Am Chem Soc 129:8422–8423CrossRefGoogle Scholar
  27. 27.
    Rowsell JLC, Millward AR, Park KS, Yaghi OM (2004) J Am Chem Soc 126:5666–5667CrossRefGoogle Scholar
  28. 28.
    Rowsell JLC, Eckert J, Yaghi OM (2005) J Am Chem Soc 127:14904–14910CrossRefGoogle Scholar
  29. 29.
    Martín-Calvo A, García-Pérez E, Castillo CM, Calero S (2008) Phys Chem Chem Phys 10:7085–7091CrossRefGoogle Scholar
  30. 30.
    Dubbeldam D, Frost H, Walton KS, Snurr RQ (2007) Fluid Phase Equilibria 261:152–161CrossRefGoogle Scholar
  31. 31.
    Amirjalayer S, Schmid R (2009) Microporous Mesoporous Mater 125:90–96CrossRefGoogle Scholar
  32. 32.
    Moellmer J, Celer EB, Luebke R, Cairns AJ, Staudt R, Eddaoudi M, Thommes M (2010) Microporous Mesoporous Mater 129:345–353CrossRefGoogle Scholar
  33. 33.
    Wells BA, Liang Z, Marshall M, Chaffee AL (2009) Energ Proc 1:1273–1280CrossRefGoogle Scholar
  34. 34.
    Pawsey S, Moudrakovski I, Ripmeester J, Wang LO, Exarhos GJ, Rowsell JLC, Yaghi OM (2007) J Phys Chem C 111:6060–6067CrossRefGoogle Scholar
  35. 35.
    Xiong R, Fern JT, Keffer DJ, Fuentes-Cabrera MA, Nicholson DM (2009) Mol Simul 35:910–919CrossRefGoogle Scholar
  36. 36.
    Odbadrakh K, Lewis JP, Nicholson DM, Petrova T, Michalkova A, Leszczynski J (2020) J Phys Chem C 114:3732–3736CrossRefGoogle Scholar
  37. 37.
    Xiong R, Keffer DJ, Fuentes-Cabrera M, Nicholson DM, Michalkova A, Petrova T, Leszczynski T, Odbadrakh K, Doss BL, Lewis JP (2010) Langmuir 26:5942–5950CrossRefGoogle Scholar
  38. 38.
    Xiong R, Odbadrakh K, Michalkova A, Luna JP, Petrova T, Keffer DJ, Nicholson DM, Fuentes-Cabrera MA, Lewis JP, Leszczynski J (2010) Sens Actuators B Chem 143:459–468CrossRefGoogle Scholar
  39. 39.
    Odbadrakh K, Lewis JP, Nicholson DM (2010) J Phys Chem C 114:7535–7540CrossRefGoogle Scholar
  40. 40.
    Dubnikova F, Kosloff R, Zeiri Y, Karpas Z (2002) J Phys Chem A 106:4951–4956CrossRefGoogle Scholar
  41. 41.
    Munoz RAA, Lu D, Cagan A, Wang J (2007) Analyst 132:560–565CrossRefGoogle Scholar
  42. 42.
    Schulte-Ladbeck R, Vogel M, Karst U (2006) Anal Bioanal Chem 386:559–565CrossRefGoogle Scholar
  43. 43.
    Efremenko I, Zach R, Zeiri Y (2007) J Phys Chem C 111:11903–11911CrossRefGoogle Scholar
  44. 44.
    Petrova T, Michalkova A, Leszczynski J (2009) Struct Chem 21:391–404CrossRefGoogle Scholar
  45. 45.
    Burrows AD, Cassar K, Friend RMW, Mahon MF, Rigby SP, Warren JE (2005) Cryst Eng Comm 7:548–550Google Scholar
  46. 46.
    Schröck K, Schröder F, Heyden M, Fischer RA, Havenith M (2008) Phys Chem Chem Phys 10:4732–4739CrossRefGoogle Scholar
  47. 47.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian Inc. Wallingford, CTGoogle Scholar
  48. 48.
    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford Univ Press, OxfordGoogle Scholar
  49. 49.
    Grimme S (2006) J Comput Chem 27:1787–1799CrossRefGoogle Scholar
  50. 50.
    Zhidomirov GM, Shubin AA, Milov MA, Kazansky VB, van Santen RA, Hensen EJM (2008) J Phys Chem C 112:3321–3326CrossRefGoogle Scholar
  51. 51.
    Yuan S, Shi W, Li B, Wang J, Jiao H, Li YW (2005) J Phys Chem A 109:2594–2601CrossRefGoogle Scholar
  52. 52.
    Castella-Ventura M, Akacem Y, Kassab E (2008) J Phys Chem C 112:19045–19054Google Scholar
  53. 53.
    Soscun H, Castellano O, Hernandez J (2004) J Phys Chem B 108:5620–5626CrossRefGoogle Scholar
  54. 54.
    Pelmenschikov A, Leszczynski J (1999) J Phys Chem B 103:6886–6890CrossRefGoogle Scholar
  55. 55.
    Gorb L, Lutchyn R, Zub Y, Leszczynska D, Leszczynski D (2006) Theochem 766:151–157CrossRefGoogle Scholar
  56. 56.
    Gorb L, Gu J, Leszczynska D, Leszczynski J (2000) Phys Chem Chem Phys 2:5007–5012CrossRefGoogle Scholar
  57. 57.
    Michalkova A, Szymczak JJ, Leszczynski J (2005) Struct Chem 16:325–337CrossRefGoogle Scholar
  58. 58.
    Sauer J (1989) Chem Rev 89:199–255CrossRefGoogle Scholar
  59. 59.
    Sauer J, Ugliengo P, Garrone E, Saunders VR (1994) Chem Rev 94:2095–2160CrossRefGoogle Scholar
  60. 60.
    Boys SF, Bernardi F (1970) Mol Phys 19:553–566CrossRefGoogle Scholar
  61. 61.
    Bader RWF (1990) Atoms in Molecules: A Quantum Theory. Oxford University Press, OxfordGoogle Scholar
  62. 62.
    Koch U, Popelier PLA (1995) J Phys Chem 99:9747–9754CrossRefGoogle Scholar
  63. 63.
    Popelier PLA (1998) J Phys Chem A 102:1873–1878CrossRefGoogle Scholar
  64. 64.
    Biegler-König F, Schönbohm J, Bayles D (2001) J Comput Chem 22:545–559CrossRefGoogle Scholar
  65. 65.
    Muñoz-Caro C, Niño A, Sement ML, Leal JM, Ibeas S (2000) J Org Chem 65:405–410CrossRefGoogle Scholar
  66. 66.
    Murray JS, Politzer P (2010) Wiley Interdisciplinary Reviews. Comput Mol Sci 1:153–163CrossRefGoogle Scholar
  67. 67.
    Jiao H, PvR S (1994) J Chem Soc Faraday Trans 90:1559–1567CrossRefGoogle Scholar
  68. 68.
    White JC, Hess CA (1993) J Phys Chem 97:6398–6404CrossRefGoogle Scholar
  69. 69.
    Varetto U < MOLEKEL Version>; Swiss National Supercomputing Centre: Manno (Switzerland), http://wwwbioinformaticsorg/molekel/wiki/Main/HomePage
  70. 70.
    Blake NP, Weakliem PC, Metiu H (1998) J Phys Chem 102:67–74CrossRefGoogle Scholar
  71. 71.
    Igarashi K, Tajiri K, Tanemura S, Nanbu R, Fukunaga T (1997) Z Phys D At Mol Clusters 40:562–565CrossRefGoogle Scholar
  72. 72.
    Wozniak K, He H, Klinowski J, Jones W, Grech E (1994) J Phys Chem 98:13755–13765CrossRefGoogle Scholar
  73. 73.
    Yang Q, Zhong C, Chen JF (2008) J Phys Chem C 112:1562–1569CrossRefGoogle Scholar
  74. 74.
    Hafizovic J, Bjørgen M, Olsbye U, Dietzel PDC, Bordiga S, Prestipino C, Lamberti C, Lillerud KP (2007) J Am Chem Soc 129:3612–3620CrossRefGoogle Scholar
  75. 75.
    Greathouse JA, Allendorf MD (2006) J Am Chem Soc 128:10678–10679CrossRefGoogle Scholar
  76. 76.
    Novakovic SB, Bogdanovic GA, Fraisse B, Ghermani NE, Bouhmaida N (2007) Spasojevic-de Bire A. J Phys Chem A 111:13492–13505CrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2012

Authors and Affiliations

  • Andrea Michalkova Scott
    • 1
    • 2
  • Tetyana Petrova
    • 2
  • Khorgolkhuu Odbadrakh
    • 3
  • Donald M. Nicholson
    • 4
  • Miguel Fuentes-Cabrera
    • 4
  • James P. Lewis
    • 5
  • Frances C. Hill
    • 1
  • Jerzy Leszczynski
    • 2
  1. 1.U.S. Army Engineer Research and Development Center (ERDC)VicksburgUSA
  2. 2.Interdisciplinary Nanotoxicity Center, Department of ChemistryJackson State UniversityJacksonUSA
  3. 3.Materials Science and Technology DivisionOak Ridge National Laboratory (ORNL)Oak RidgeUSA
  4. 4.Center for Nanophase Materials Sciences, and Computer Sciences and Mathematics DivisionOak Ridge National LaboratoryOak RidgeUSA
  5. 5.Department of Physics and AstronomyWest Virginia UniversityMorgantownUSA

Personalised recommendations