Skip to main content
Log in

Structural, electronic and magnetic effects of Al-doped niobium clusters: a density functional theory study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The application of the ab initio stochastic search procedure with Saunders “kick” method has been carried out for the elucidation of global minimum structures of a series of Al-doped clusters, NbnAl (1 ≤ n ≤ 10). We have studied the structural characters, growth behaviors, electronic and magnetic properties of NbnAl by the density functional theory calculations. Unlike the previous literature reported on Al-doped systems where ground state structures undergo a structural transition from the Al-capped frame to Al-encapsulated structure, we found that Al atom always occupies the surface of NbnAl clusters and structural transition does not take place until n = 10. Note that the fragmentation proceeds preferably by the ejection of an aluminum atom other than niobium atom. According to the natural population analysis, charges always transfer from aluminum to niobium atoms. Furthermore, the magnetic moments of the NbnAl clusters are mainly located on the 4d orbital of niobium atoms, and aluminum atom possesses very small magnetic moments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fielicke A, Ratsch C, Helden GV, Meijer G (2007) J Chem Phys 127:234306–234313

    Article  Google Scholar 

  2. Pramann A, Nakajima A, Kaya K (2001) Chem Phys Lett 347:366–372

    Article  CAS  Google Scholar 

  3. Knickelbein MB, Menezes WJC (1992) Phys Rev Lett 69:1046–1049

    Article  CAS  Google Scholar 

  4. Knickelbein MB, Yang S (1990) J Chem Phys 93:5760–5767

    Article  CAS  Google Scholar 

  5. Loh SK, Lian L, Armentrout PB (1989) J Am Chem Soc 111:3167–3176

    Article  CAS  Google Scholar 

  6. Marcy TP, Leopold DG (2000) Int J Mass Spectrom 195–196:653–666

    Google Scholar 

  7. Kietzmann H, Morenzin J, Bechthold PS, Ganteför G, Eberhardt W, Yang DS, Hackett PA, Fournier R, Pang T, Chen CF (1996) Phys Rev Lett 77:4528–4531

    Article  CAS  Google Scholar 

  8. Berg C, Schindler T, Niedner-Schatteburg G, Bondybey VE (1995) J Chem Phys 102:4870–4884

    Article  CAS  Google Scholar 

  9. Bondybey VE, English JH (1981) J Chem Phys 74:6978–6979

    Article  CAS  Google Scholar 

  10. Geusic ME, Morse MD, Smalley RE (1985) J Chem Phys 82:590–591

    Article  CAS  Google Scholar 

  11. Morse MD, Geusic ME, Heath JR, Smalley RE (1985) J Chem Phys 83:2293–2304

    Article  CAS  Google Scholar 

  12. Hamrick YM, Morse MD (1989) J Phys Chem 93:6494–6501

    Article  CAS  Google Scholar 

  13. Radi PP, von Helden G, Hsu MT, Klemper PR, Bowers MT (1991) Int J Mass Spectrom Ion Process 109:49–73

    Article  CAS  Google Scholar 

  14. Loh SK, Lian L, Armentrout PB (1989) J Chem Phys 91:6148–6163

    Article  CAS  Google Scholar 

  15. Kumar V, Kawazoe Y (2002) Phys Rev B 65:125403–125413

    Article  Google Scholar 

  16. Majumdar D, Balasubramanian K (2003) J Chem Phys 119:12866–12877

    Article  CAS  Google Scholar 

  17. Majumdar D, Balasubramanian K (2001) J Chem Phys 115:885–898

    Article  CAS  Google Scholar 

  18. Majumdar D, Balasubramanian K (2004) J Chem Phys 121:4014–4032

    Article  CAS  Google Scholar 

  19. Goodwin L, Salahub DR (1993) Rhys Rev A 47:R774–R777

    Article  CAS  Google Scholar 

  20. Fowler JE, Garcia A, Ugalde JM (1999) Phys Rev A 60:3058–3070

    Article  CAS  Google Scholar 

  21. Zhai HJ, Wang B, Huang X, Wang LS (2009) J Phys Chem A 113:3866–3875

    Article  CAS  Google Scholar 

  22. Nhat PV, Ngan VT, Nguyen MT (2010) J Phys Chem C 114:13210–13218

    Article  CAS  Google Scholar 

  23. Grönbeck H, Rosén A (1996) Phys Rev B 54:1549–1552

    Article  Google Scholar 

  24. Xie Y, He SG, Dong F, Bernstein ER (2008) J Chem Phys 128:044306–044314

    Article  CAS  Google Scholar 

  25. Berces A, Hackett PA, Lian L, Mitchell SA, Rayner DM (1998) J Chem Phys 108:5476–5490

    Article  CAS  Google Scholar 

  26. Holmgren L, Andersson M, Rosen A (1995) Surf Sci 331–333:231–236

    Article  Google Scholar 

  27. Grönbeck H, Rosén A, Andreoni W (1998) Phys Rev A 58:4630–4636

    Article  Google Scholar 

  28. Fournier R, Pang T, Chen CF (1998) Phys Rev A 57:3683–3691

    Article  CAS  Google Scholar 

  29. Xiang J, Wei SH, Yan XH, You JQ, Mao YL (2004) J Chem Phys 120:4251–4257

    Article  CAS  Google Scholar 

  30. Zhao GF, Zhang J, Jing Q, Luo YH, Wang YX (2007) J Chem Phys 127:234312–234318

    Article  Google Scholar 

  31. Majumder C, Kulshreshtha SK (2004) Phys Rev B 69:115432–115439

    Article  Google Scholar 

  32. Feng XJ, Luo YH (2007) J Phys Chem A 111:2420–2425

    Article  CAS  Google Scholar 

  33. Dhavale A, Shah V, Kanhere DG (1998) Phys Rev A 57:4522–4527

    Article  CAS  Google Scholar 

  34. Tian FY, Jing Q, Wang YX (2008) Phys Rev A 77:013202–013209

    Article  Google Scholar 

  35. Chen DL, Tian WQ, Sun CC (2007) Phys Rev A 75:013201–013208

    Article  Google Scholar 

  36. Cheng HP, Barnett RN, Landman U (1993) Phys Rev B 48:1820–1824

    Article  CAS  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB et al. (2004) Gaussian 03 Revision E.01. Gaussian, Inc, Wallingford, CT

    Google Scholar 

  38. Roy D, Corminboeuf C, Wannere CS, King RB, Schleyer PvR (2006) Inorg Chem 45:8902–8906

    Article  CAS  Google Scholar 

  39. Bera PP, Sattelmeyer KW, Saunders M, Schaefer HF, Schleyer PvR (2006) J Phys Chem A 110:4287–4290

    Article  CAS  Google Scholar 

  40. Saunders M (2004) J Comput Chem 25:621–626

    Article  CAS  Google Scholar 

  41. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  42. Perdew JP (1991) In: Ziesche P, Eschrig H (eds) Electronic structure of solids. Akademie, Berlin

    Google Scholar 

  43. Perdew JP, Chevary JA, Jackson SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  44. Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249

    Article  Google Scholar 

  45. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  46. Perdew P, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  47. Wang HQ, Kuang XY, Li HF (2010) Phys Chem Chem Phys 12:5156–5165

    Article  CAS  Google Scholar 

  48. Li HF, Kuang XY, Wang HQ (2011) Phys Lett A 375:2836–2844

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the the National Natural science Foundation of China (Nos. 60838003 and 10774103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huai-Qian Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, HQ., Li, HF., Wang, JX. et al. Structural, electronic and magnetic effects of Al-doped niobium clusters: a density functional theory study. J Mol Model 18, 2993–3001 (2012). https://doi.org/10.1007/s00894-011-1314-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1314-y

Keywords

Navigation