Skip to main content

Predicting functional residues of the Solanum lycopersicum aspartic protease inhibitor (SLAPI) by combining sequence and structural analysis with molecular docking

Abstract

The Solanum lycopersicum aspartic protease inhibitor (SLAPI), which belongs to the STI-Kunitz family, is an effective inhibitor of the aspartic proteases human cathepsin D and Saccharomyces proteinase A. However, in contrast with the large number of studies on the inhibition mechanism of the serine proteases by the STI-Kunitz inhibitors, the structural aspects of the inhibition mechanism of aspartic proteases from this family of inhibitors are poorly understood. In the present study, we have combined sequence and structural analysis methods with protein-protein docking to gain a better understanding of the SLAPI inhibition mechanism of the proteinase A. The results suggest that: i) SLAPI loop L9 may be involved in the inhibitor interaction with the proteinase A´s active site, and ii) the residues I144, V148, L149, P151, F152 and R154 are implicated in the difference in the potency shown previously by SLAPI and another STI-Kunitz inhibitor isolated from Solanum tuberosum to inhibit proteinase A. These results will be useful in the design of site directed mutagenesis experiments to understand more thoroughly the aspartic protease inhibition mechanism of SLAPI and other related STI-Kunitz inhibitors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Cooper JB (2002) Aspartic proteinases in disease: a structural perspective. Curr Drug Targets 3:155–173

    Article  CAS  Google Scholar 

  2. Dunn BM (2002) Structure and mechanism of the pepsin-like family of aspartic peptidases. Chem Rev 102:4431–4458

    Article  CAS  Google Scholar 

  3. Abbenante G, Fairlie DP (2005) Protease inhibitors in the clinic. Med Chem 1:71–104

    Article  CAS  Google Scholar 

  4. Laing WA, McManus MT (2002) Proteinase inhibitors. In: McManus MT, Laing WA, Allan AC (eds) Annual plant reviews, vol 7. Protein interactions in plants. Sheffield Academic, Sheffield, pp 77–119

  5. Mareš M, Meloun B, Pavlík M, Kostka V, Baudygš M (1989) Primary structure of cathepsin D inhibitor from potatoes and its structure relationship to soybean trypsin inhibitor family. FEBS Lett 251:94–98

    Article  Google Scholar 

  6. Ritonja A, Križajl I, Meškol P, Kopitar’ M, Lučovnik’ P, Šhrukeljl B, Pungerčarl J, Buttle DJ, Barrett AJ, Turk V (1990) The amino acid sequence of a novel inhibitor of cathepsin D from potato. FEBS Lett 267:13–15

    Article  CAS  Google Scholar 

  7. Cater SA, Lees WE, Hill J, Brzin J, Kay J, Phylip LH (2002) Aspartic proteinase inhibitors from tomato and potato are more potent against yeast proteinase A than cathepsin D. Biochim Biophys Acta 1956:76–82

    Article  Google Scholar 

  8. Martzen MR, McMullen BA, Smith NE, Fujikawa K, Peanasky RJ (1990) Primary structure of the major pepsin inhibitor from the intestinal parasitic nematode Ascaris suum. Biochemistry 29:7366–7372

    Article  CAS  Google Scholar 

  9. Dreyer T, Valler MJ, Kay J, Charlton P, Dunn BM (1985) The selectivity of action of the aspartic-proteinase inhibitor IA3 from yeast (Saccharomyces cerevisiae). Biochem J 231:777–779

    CAS  Google Scholar 

  10. Lenarčič B, Turk V (1999) Thyroglobulin type-1 domains in Equistatin inhibit both Papain-like Cysteine Proteinases and Cathepsin D. J Biol Chem 274:563–566

    Article  Google Scholar 

  11. Mathialagan N, Hansen TR (1996) Pepsin-inhibitory activity of the uterine serpins. Proc Natl Acad Sci USA 93:13653–13658

    Article  CAS  Google Scholar 

  12. Christeller JT, Farley PC, Ramsay RJ, Suvillan PA, Laing WA (1998) Purification, characterization and cloning of an aspartic proteinase inhibitor from squash phloem exudate. Eur J Biochem 254:160–167

    Article  CAS  Google Scholar 

  13. Headey SJ, MacAskill UK, Wright MA, Claridge JK, Edwards PJB, Farley PC, Christeller JT, Laing WA, Pascal SM (2010) The solution structure of the squash aspartic acid proteinase inhibitor (SQAPI) and mutational analysis of pepsin inhibition. J Biol Chem 286:27019–27025

    Article  Google Scholar 

  14. Christeller JT (2005) Evolutionary mechanisms acting on proteinase inhibitor variability. FEBS J 272:5710–5722

    Article  CAS  Google Scholar 

  15. Ng KKS, Petersen JFW, Cherney MM, Garen C, Zalatoris JJ, Rao-Naik C, Dunn BM, Martzen MR, Peanasky RJ, James MNG (2000) Structural basis for the inhibition of porcine pepsin by Ascaris pepsin inhibitor-3. Nat Struct Biol 7:653–657

    Article  CAS  Google Scholar 

  16. Li M, Phylip LH, Lees WE, Winther JR, Dunn BM, Wlodawer A, Kay J, Gustchina A (2000) The aspartic proteinase from Saccharomyces cerevisiae folds its own inhibitor into a helix. Nat Struct Biol 7:113–117

    Article  CAS  Google Scholar 

  17. Keilova H, Tomasek V (1976) Isolation and properties of Cathepsin D inhibitor from potatoes. Collect Czech Chem Commun 41:489–497

    Article  CAS  Google Scholar 

  18. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  Google Scholar 

  19. Galtier N, Guoy M, Gautier C (1996) SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 6:543–548

    Google Scholar 

  20. Kelley LA, Sternberg MJE (2009) Protein structure prediction on the web: a case study using the Phyre server. Nat Protocols 4:363–371

    Article  CAS  Google Scholar 

  21. McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405

    Article  CAS  Google Scholar 

  22. Cole C, Barber JD, Barton GJ (2008) The Jpred 3 secondary structure prediction server. Nucleic Acids Res 36:W197–W201

    Article  CAS  Google Scholar 

  23. Pollastri G, Przybylski D, Rost B, Baldi P (2002) Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins 47:228–235

    Article  CAS  Google Scholar 

  24. Carro A, Tress M, de Juan D, Pazos F, Lopez-Romero P, del Sol A, Valencia A, Rojas AM (2006) TreeDet: a web server to explore sequence space. Nucleic Acids Res 34:W110–W115

    Article  CAS  Google Scholar 

  25. Creighton TE, Darby NJ (1989) Functional evolutionary divergence of proteolytic enzymes and their inhibitors. Trends Biochem Sci 14:319–324

    Article  CAS  Google Scholar 

  26. del Sol MA, Pazos F, Valencia A (2003) Automatic methods for predicting functionally important residues. J Mol Biol 326:1289–1302

    Article  Google Scholar 

  27. Rausell A, Juan D, Pazos F, Valencia A (2010) Protein interactions and ligand binding: from protein subfamilies to functional specificity. Proc Natl Acad Sci USA 107:1995–2000

    Article  CAS  Google Scholar 

  28. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  Google Scholar 

  29. Guda C, Lu S, Scheeff ED, Bourne PE, Shindyalov IN (2004) CE-MC: a multiple protein structure alignment server. Nucleic Acids Res 32:W100–W103

    Article  CAS  Google Scholar 

  30. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  31. Hooft RW, Vriend G, Sander C, Abola EE (1996) Errors in protein structure. Nature 381:272

    Article  CAS  Google Scholar 

  32. Bowie JU, Luthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253:164–170

    Article  CAS  Google Scholar 

  33. Luthy R, Bowie JU, Eisenberg D (1991) Assesment of protein models with three-dimensional profiles. Nature 356:83–85

    Article  Google Scholar 

  34. Qin S, Zhou H-X (2007) meta-PPISP: a meta web server for protein-proein interaction site prediction. Bioinformatics 23:3386–3387

    Article  CAS  Google Scholar 

  35. Chen H, Zhou H-X (2005) Prediction of interface residues in protein-protein complexes by a consensus neural network method: test against NMR data. Proteins 61:21–35

    Article  CAS  Google Scholar 

  36. Neuvirth H, Raz R, Schreiber G (2004) Promate: a structure based prediction program to identify the location of protein-protein binding sites. J Mol Biol 338:181–199

    Article  CAS  Google Scholar 

  37. Liang S, Zhang C, Liu S, Zhou Y (2006) Protein binding site prediction using an empirical scoring function. Nucleic Acids Res 34:3698–3707

    Article  CAS  Google Scholar 

  38. Comeau SR, Kozakov D, Brenke R, Shen Y, Beglov D, Vajda S (2007) ClusPro: performance in CAPRI rounds 6–11 and the new server. Proteins 69:781–785

    Article  CAS  Google Scholar 

  39. Kozakov D, Brenke R, Comeau SR, Vajda S (2006) PIPER: an FFT-based protein docking program with pairwise potentials. Proteins 65:392–406

    Article  CAS  Google Scholar 

  40. Vriend G (1993) What if: a molecular modeling and drug design program. J Mol Graph 8:52–56

    Article  Google Scholar 

  41. Lesk AM, Chotia C (1980) How different amino acid sequences determine similar protein structures: the structure and evolutionary dynamics of the globins. J Mol Biol 136:225–270

    Article  CAS  Google Scholar 

  42. Amadei A, Linssen ABM, Berendsen HJC (1993) Essential dynamics of proteins. Proteins 17:412–425

    Article  CAS  Google Scholar 

  43. López-Romero P, Gómez MJ, Gómez-Puertas P, Valencia A (2004) Prediction of functional sites in proteins by evolutionary methods. In: Kamp RM, Calvete JJ, Choli-Papadopoulou T (eds) Principles and practice. Methods in proteome and protein analysis. Springer, Berlin, pp 319–340, Chapter 22

    Google Scholar 

  44. Laskowski MJ, Kato I, Ardelt W, Cook J, Denton A, Empie MW, Kohr WJ, Park SJ, Parks K, Schatzley BL et al. (1987) Ovomucoid third domains from 100 avian species: isolation, sequences, and hypervariability of enzyme-inhibitor contact residues. Biochemistry 26:202–221

    Article  CAS  Google Scholar 

  45. Hill RE, Hastie ND (1987) Accelerated evolution in the reactive centre regions of serine protease inhibitors. Nature 326:96–99

    Article  CAS  Google Scholar 

  46. Christeller JT, Farley PC, Marshall RK, Anandan A, Wright MM, Newcomb RD, Laing WA (2006) The Squash Aspartic Proteinase Inhibitor SQAPI Is widely present in the Cucurbitales, comprises a small Multigene family, and is a member of the Phytocystatin family. J Mol Evol 63:747–757

    Article  CAS  Google Scholar 

  47. Ezkurdia I, Bartoli L, Fariselli P, Casadio R, Valencia A, Tress ML (2009) Progress and challenges in predicting protein-protein interaction sites. Brief Bioinform 10:233–246

    Article  CAS  Google Scholar 

  48. de Vries SJ, Bonvin AMJJ (2008) How proteins get in touch: interface prediction in the study of biomolecular complexes. Curr Protein Peptide Sci 9:394–406

    Article  Google Scholar 

  49. van Dijk ADJ, de Vries SJ, Domínguez C, Chen H, Zhou H-X (2005) Data-driven docking: HADDOCK´s adventures in CAPRI. Proteins 60:232–238

    Article  Google Scholar 

  50. Tress ML, de Juan D, Grana O, Gomez MJ, Gomez-Puertas P, Gonzalez JM, Lopez G, Valencia A (2005) Scoring docking models with evolutionary information. Proteins 60:275–280

    Article  CAS  Google Scholar 

  51. Liang J, Edelsbrunner H, Woodward C (1998) Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Sci 7:1884–1897

    Article  CAS  Google Scholar 

  52. Lo Conte L, Cyrus C, Janin J (1999) The atomic structure of protein-protein recognition sites. J Mol Biol 285:2177–2198

    Article  CAS  Google Scholar 

  53. Gahloth D, Selvakumar P, Shee C, Kumar P, Sharma AK (2010) Cloning, sequence analysis and crystal structure determination of a miraculin-like protein from Murraya koenigii. Arch Biochem Biophys 494:15–22

    Article  CAS  Google Scholar 

  54. Shee C, Islam A, Ahma F, Sharma AK (2007) Structure–function studies of Murraya koenigii trypsin inhibitor revealed a stable core beta sheet structure surrounded by α-helices with a possible role for α-helix in inhibitory function. Int J Biol Macromol 41:410–414

    Article  CAS  Google Scholar 

  55. Lisón P, Rodrigo I, Conejero V (2006) A novel function for the Cathepsin D inhibitor in tomato. Plant Physiol 142:1329–1339

    Article  Google Scholar 

  56. Otlewski J, Jelen F, Zakrzewska M, Oleksy A (2005) The many faces of protease-inhibitor interaction. EMBO J 24:1303–1310

    Article  CAS  Google Scholar 

  57. Helland R, Otlewski J, Sundheim O, Dadlez M, Smalas AO (1999) The crystal structures of the complexes between bovine beta-trypsin and ten P1 variants of BPTI. J Mol Biol 287:923–942

    Article  CAS  Google Scholar 

  58. Ardelt W, Laskowki JM (1985) Turkey ovomucoid third domain inhibits eight different serine proteinases of varied specificity on the same … Leu18-Glu19 … reactive site. Biochemistry 24:5313–5320

    Article  CAS  Google Scholar 

  59. Franco OL, Grossi de Sá MF, Sales MP, Mello LV, Oliveira AS, Rigden DJ (2002) Overlapping binding sites for Trypsin and Papain on a Kunitz-type proteinase inhibitor from Prosopis juliflora. Proteins 49:335–341

    Article  CAS  Google Scholar 

  60. Farley PC, Christeller JT, Sullivan ME, Sullivan PA, Laing WA (2002) Analysis of the interaction between the aspartic peptidase inhibitor SQAPI and aspartic peptidases using surface plasmon resonance. J Mol Recognit 15:135–144

    Article  CAS  Google Scholar 

  61. Arenas NE, Salazar LM, Soto CY, Vizcaíno C, Patarroyo ME, Patarroyo MA, Gómez A (2011) Molecular modeling and in silico characterization of mycobacterium tuberculosis TlyA: possible misannotation of this tubercle bacilli-hemolysin. BMC Struct Biol 11:16

    Article  CAS  Google Scholar 

  62. Pons T, Naumoff DG, Martínez-Fleites C, Hernández L (2004) Three acidic residues are at the active site of a β-propeller architecture in glycoside hydrolase families 32, 43, 62, and 68. Proteins 54:424–432

    Article  CAS  Google Scholar 

  63. Perera E, Pons T, Hernandez D, Moyano FJ, Martínez-Rodríguez G, Mancera JM (2010) New members of the brachyurins family in lobster include a trypsin-like enzyme with amino acid substitutions in the substrate-binding pocket. FEBS J 277:3489–3501

    Article  CAS  Google Scholar 

  64. Valiente PA, Batista PR, Pupo A, Pons T, Valencia A, Pascutti PG (2008) Predicting functional residues in Plasmodium falciparum plasmepsins by combining sequence and structural analysis with molecular dynamics simulations. Proteins 73:440–457

    Article  CAS  Google Scholar 

  65. Pons T, González B, Ceciliani F, Galizzi A (2006) FlgM anti-sigma factors: identification of novel members of the family, evolutionary analysis, homology modeling, and analysis of sequence-structure-function relationships. J Mol Model 12:973–983

    Article  CAS  Google Scholar 

  66. Rahi A, Rehan M, Garg R, Tripathi D, Lynn AM, Bhatnagar R (2011) Enzymatic characterization of catalase from bacillus anthracis and prediction of critical residues using information theoretic measure of relative entropy. Biochem Biophys Res Commun 411:88–95

    Article  CAS  Google Scholar 

  67. Sikora S, Godzik A (2004) Combination of multiple alignment analysis and surface mapping paves a way for a detailed pathway reconstruction—the case of VHL (von Hippel-Lindau) protein and angiogenesis regulatory pathway. Protein Sci 13:786–796

    Article  CAS  Google Scholar 

  68. DeLano WL (2004) The PyMOL molecular graphics system, 097th edn. DeLano Scientific LLC, San Carlos

    Google Scholar 

Download references

Acknowledgments

This research was supported by the International Foundation for Science (IFS), Stockholm, Sweden, through a grant to YG (grant No. F/4927-1). YG would also like to thank MSc. Alexandra Nárvaez from the Pontificia Universidad Católica del Ecuador (PUCE) for providing lab facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yasel Guerra or Tirso Pons.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 1

Quality parameters SLAPI 3D models and templates (PDF 97 kb)

Fig. 1

Principal component analysis of the 3D models of SLAPI. (a) Eigenvalues, in decreasing order of magnitude obtained from the backbone coordinates covariance matrix of the chosen models. (b) Root mean square fluctuation (rmsf) per atom in the PC1 (Up panel) and PC2 (Bottom panel) modes. The dashed black oval enclosed loop L9 region of the SLAPI models. (c) Projection of the 3D models of SLAPI onto the subspace spanned by PC1 and PC2. The dashed black oval enclosed the SLAPI models built using the 3D structure 3iir as template. (PDF 97 kb)

Table 2

Protein-protein interface residues predicted by meta-PPISP web server (PDF 604 kb)

Table 3

Residues forming pockets in the proteinase A crystal structure (PDF 109 kb)

Table 4

Frequency of appearance of SLAPI contact residues (PDF 350 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Guerra, Y., Valiente, P.A., Berry, C. et al. Predicting functional residues of the Solanum lycopersicum aspartic protease inhibitor (SLAPI) by combining sequence and structural analysis with molecular docking. J Mol Model 18, 2673–2687 (2012). https://doi.org/10.1007/s00894-011-1290-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1290-2

Keywords