Skip to main content
Log in

First-principles molecular dynamics simulations of the H2O / Cu(111) interface

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A first-principles theoretical study of the water-Cu(111) interface based on density functional calculations is reported. Using differently sized surface models: p(2 × 2), p(4 × 4) and p(4 × 5), we found out that the adsorption energy of a H2O monomer does not significantly change with the surface model though the adsorption geometry is sensitive to the choice of the super-cell surface and, also, to the coverage. Molecular dynamics simulations on the Born-Oppenheimer surface of liquid water on a Cu(111) surface reveal that H2O in the first solvent layer adsorbs O-down and that the H-bond network is weaker upon adsorption on the Cu. Furthermore, absolute electrochemical potentials are presented and compared to the potential of zero charge obtained experimentally and theoretically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hodgson A, Haq S (2009) Water adsorption and the wetting of metal surfaces. Surf Sci Rep 64:381–451. doi:10.1016/j.surfrep.2009.07.001

    Article  CAS  Google Scholar 

  2. Henderson M (2002) The interaction of water with solid surfaces: Fundamental aspects revisited. Surf Sci Rep 46:1–308. doi:10.1016/S0167-5729(01)00020-6

    Article  CAS  Google Scholar 

  3. Thiel P, Madey T (1987) The interaction of water with solid surfaces: Fundamental aspects. Surf Sci Rep 7:211–385. doi:10.1016/0167-5729(87)90001-X

    Article  CAS  Google Scholar 

  4. Morgenstern K, Nieminen J (2002) Intermolecular bond length of ice on Ag(111). Phys Rev Lett 88:066102. doi:10.1103/PhysRevLett.88.066102

    Article  Google Scholar 

  5. Morgenstern K, Rieder K (2002) Formation of the cyclic ice hexamer via excitation of vibrational molecular modes by the scanning tunneling microscope. J Chem Phys 116:5746–5753. doi:10.1063/1.1453965

    Article  CAS  Google Scholar 

  6. Cerdá J, Michaelides A, Bocquet M, Feibelman P, Mitsui T, Rose M, Fomin E, Salmeron M (2010) Novel water overlayer growth on Pd(111) characterized with scanning tunneling microscopy and density functional theory. Phys Rev Lett 93:116101. doi:10.1103/PhysRevLett.93.116101

    Article  Google Scholar 

  7. Nie S, Feibelman P, Bartelt N, Thürmer K (2010) Pentagons and heptagons in the first water layer on Pt(111). Phys Rev Lett 105:026102. doi:10.1103/PhysRevLett.105.026102

    Article  CAS  Google Scholar 

  8. Carrasco J, Michaelides A, Forster M, Haq S, Raval R, Hodgson A (2009) A one-dimensional ice structure built from pentagons. Nat Mater 8:427–431. doi:10.1038/nmat2403

    Article  CAS  Google Scholar 

  9. Michaelides A, Ranea V, De Andres P, King D (2003) General model for water monomer adsorption on close-packed transition and noble metal surfaces. Phys Rev Lett 90:216102. doi:10.1103/PhysRevLett.90.216102

    Article  CAS  Google Scholar 

  10. Tang Q, Chen Z (2007) Density functional slab model studies of water adsorption on flat and stepped Cu surfaces. Surf Sci 601:954–964. doi:10.1016/j.susc.2006.11.036

    Article  CAS  Google Scholar 

  11. Wang G, Nakamura J (2010) Structure sensitivity for forward and reverse water-gas shift reactions on copper surfaces: a DFT study. J Phys Chem Lett 1:3053–3057. doi:10.1021/jz101150w

    Article  CAS  Google Scholar 

  12. Fajín J, Illas F, Gomes J (2009) Effect of the exchange-correlation potential and of surface relaxation on the description of the H2O dissociation on Cu(111). J Chem Phys 130:224702–224710. doi:10.1063/1.3149851

    Article  Google Scholar 

  13. Gokhale A, Dumesic J, Mavrikakis M (2008) On the mechanism of low-temperature water gas shift reaction on copper. J Am Chem Soc 130:1402–1414. doi:10.1021/ja0768237

    Article  CAS  Google Scholar 

  14. Feibelman P (2002) Partial dissociation of water on Ru(0001). Science 295:99–102. doi:10.1126/science.1065483

    Article  CAS  Google Scholar 

  15. Vassilev P, van Santen R, Koper M (2005) Ab initio studies of a water layer at transition metal surfaces. J Chem Phys 122:054701–054713. doi:10.1063/1.1834489

    Article  Google Scholar 

  16. Poissier A, Ganeshan S, Fernández-Serra M (2011) The role of hydrogen bonding in water–metal interactions. Phys Chem Chem Phys 13:3375–3384. doi:10.1039/C0CP00994F

    Article  CAS  Google Scholar 

  17. Dion M, Rydberg H, Schröder E, Langreth D, Lundqvist B (2004) Van der Waals density functional for general geometries. Phys Rev Lett 92:246401–246405. doi:10.1103/PhysRevLett.92.246401

    Article  CAS  Google Scholar 

  18. Carrasco J, Santra B, Klimeš J, Michaelides A (2011) To wet or not to wet? Dispersion forces tip the balance for water ice on metals. Phys Rev Lett 106:026101–026105. doi:10.1103/PhysRevLett.106.026101

    Article  Google Scholar 

  19. Toney M, Howard J, Richer J, Borges G, Gordon J, Melroy O, Wiesler D, Yee D, Sorensen L (1994) Voltage-dependent ordering of water molecules at an electrode–electrolyte interface. Nature 368:444–446. doi:10.1038/368444a0

    Article  CAS  Google Scholar 

  20. Ataka K, Yotsuyanagi T, Osawa M (1996) Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy. J Phys Chem 100:10664

    Article  CAS  Google Scholar 

  21. Price D, Halley J (1995) Molecular dynamics, density functional theory of the metal–electrolyte interface. J Chem Phys 102:6603–6613. doi:10.1063/1.469376

    Article  CAS  Google Scholar 

  22. Izvekov S, Mazzolo A, VanOpdorp K, Voth G (2001) Ab initio molecular dynamics simulation of the Cu(110)–water interface. J Chem Phys 114:3248–3258. doi:10.1063/1.1342859

    Article  CAS  Google Scholar 

  23. Izvekov S, Voth G (2001) Ab initio molecular dynamics simulation of the Ag(111)-water interface. J Chem Phys 115:7196–7207. doi:10.1063/1.1403438

    Article  CAS  Google Scholar 

  24. Schnur S, Gross A (2009) Properties of metal–water interfaces studied from first principles. New J Phys 11:125003. doi:10.1088/1367-2630/11/12/125003

    Article  Google Scholar 

  25. Zelsmann H (1995) Temperature dependence of the optical constants for liquid H2O and D2O in the far IR region. J Mol Struct 350:95–114. doi:10.1016/0022-2860(94)08471-S

    Article  CAS  Google Scholar 

  26. Lock A, Bakker H (2002) Temperature dependence of vibrational relaxation in liquid H2O. J Chem Phys 117:1708–1714. doi:10.1063/1.1485966

    Article  CAS  Google Scholar 

  27. Tsiplakides D, Archonta D, Vayenas C (2007) Absolute potential measurements in solid and aqueous electrochemistry using two Kelvin probes and their implications for the electrochemical promotion of catalysis. Top Catal 44:469–479. doi:10.1007/s11244-006-0139-x

    Article  CAS  Google Scholar 

  28. Taylor C, Wasileski S, Filhol J, Neurock M (2006) First principles reaction modeling of the electrochemical interface: Consideration and calculation of a tunable surface potential from atomic and electronic structure. Phys Rev B 73:165402. doi:10.1103/PhysRevB.73.165402

    Article  Google Scholar 

  29. Taylor C, Kelly R, Neurock M (2006) First Principles Modeling of Structure and Reactivity at the Metal/Water Interface. Dissertation, University of Virginia

  30. McGrath M, Siepmann J, Kuo I, Mundy C (2006) Vapor-liquid equilibria of water from first principles: comparison of density functionals and basis sets. Mol Phys 104:3619–3626. doi:10.1080/00268970601014781

    Article  CAS  Google Scholar 

  31. Liu L, Krack M, Michaelides A (2009) Interfacial water: A first principles molecular dynamics study of a nanoscale water film on salt. J Chem Phys 130:234702–234714. doi:10.1063/1.3152845

    Article  Google Scholar 

  32. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–520. doi:10.1063/1.447334

    Article  Google Scholar 

  33. Nosé S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52:255–268. doi:10.1080/00268978400101201

    Article  Google Scholar 

  34. Zhang X, Liu Q, Zhu A (2007) An improved fully flexible fixed-point charges model for water from ambient to supercritical condition. Fluid Phase Equilib 262:210–216. doi:10.1016/j.fluid.2007.09.005

    Article  CAS  Google Scholar 

  35. Heinz H, Vaia R, Farmer B, Naik R (2008) Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12–6 and 9–6 Lennard-Jones potentials. J Phys Chem C 112:17281–17290. doi:10.1021/jp801931d

    Article  CAS  Google Scholar 

  36. CP2K Developers Home Page http://cp2k.berlios.de.

  37. Hansen J, McDonald I (1986) Theory of simple liquids, 2nd edn. Academic, New York

    Google Scholar 

  38. Trasatti S (1986) The absolute electrode potential: an explanatory note. Pure Appl Chem 58:955–966. doi:10.1351/pac198658070955S

    Article  CAS  Google Scholar 

  39. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561. doi:10.1103/PhysRevB.47.558

    Article  CAS  Google Scholar 

  40. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50. doi:10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

  41. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186. doi:10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  42. Blöchl P (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979. doi:10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  43. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775. doi:10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  44. Perdew J, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. doi:10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  45. Otani M, Hamada I, Sugino O, Morikawa Y, Okamoto Y, Ikeshoji T (2008) Structure of the water/platinum interface––a first principles simulation under bias potential. Phys Chem Chem Phys 10:3609–3612. doi:10.1039/B803541E

    Article  CAS  Google Scholar 

  46. Miura N, Yamada H, Moon A (2010) Intermolecular vibrational study in liquid water and ice by using far infrared spectroscopy with synchrotron radiation of MIRRORCLE 20. Spectrochimica Acta Part A 77:1048–1053. doi:10.1016/j.saa.2010.08.071

    Article  Google Scholar 

  47. Clavilier J, Huong C (1969) Compt Rend Ser C 269:736

    CAS  Google Scholar 

  48. Walbran S, Mazzolo A, Halley J, Price D (1998) Model for the electrostatic response of the copper–water interface. J Chem Phys 109:8076–8081. doi:10.1063/1.477455

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Spanish Ministerio de Ciencia e Innovación, MICINN, projects MAT2008-4918 and CSD2008-0023. RN thanks the Junta de Andalucía for a pre-doctoral grant (P08-FQM-3661). Part of the calculations has been carried out at the Barcelona Supercomputing Center -Centro Nacional de Supercomputación (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Nadler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadler, R., Sanz, J.F. First-principles molecular dynamics simulations of the H2O / Cu(111) interface. J Mol Model 18, 2433–2442 (2012). https://doi.org/10.1007/s00894-011-1260-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1260-8

Keywords

Navigation