Skip to main content
Log in

Development of multiple QSAR models for consensus predictions and unified mechanistic interpretations of the free-radical scavenging activities of chromone derivatives

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Antioxidants are important defenders of the human body against nocive free radicals, which are the causative agents of most life-threatening diseases. The immense biomedicinal utility of antioxidants necessitates the development and design of new synthetic antioxidant molecules. The present report deals with the modeling of a series of chromone derivatives, which was done to provide detailed insight into the main structural fragments that impart antioxidant activity to these molecules. Four different quantitative structure–property relationship (QSAR) techniques, namely 3D pharmacophore mapping, comparative molecular similarity indices analysis (CoMSIA 3D-QSAR), hologram QSAR (HQSAR), and group-based QSAR (G-QSAR) techniques, were employed to obtain statistically significant models with encouraging external predictive potentials. Moreover, the visual contribution maps obtained for the different models signify the importance of different structural features in specific regions of the chromone nucleus. Additionally, the G-QSAR models determine the composite influence of pairs of substituent fragments on the overall antioxidant activity profiles of the molecules. Multiple models with different strategies for assessing structure–activity relationships were applied to reach a unified conclusion regarding the antioxidant mechanism and to provide consensus predictions, which are more reliable than values derived from a single model. The structural information obtained from the various QSAR models developed in the present work can thus be effectively utilized to design and predict the activities of new molecules belonging to the class of chromone derivatives.

Schematic diagram showing different features at various positions favoring the antioxidant activity profiles of the chromone derivatives, as well as the different QSAR techniques adopted to reach the conclusions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Proctor PH (1989) Free radicals and human disease. In: Miquel J (ed) CRC handbook of free radicals and antioxidants in biomedicine. CRC Press, Boca Raton, pp 209–221

    Google Scholar 

  2. Prasad K, Kalra J (1993) Oxygen free radicals and hypercholesterolemic atherosclerosis: effect of vitamin E. Am Heart J 125:958–973

    Article  CAS  Google Scholar 

  3. Balazas L, Leon M (1994) Evidence of an oxidative challange in the Alzheimer's brain. Neurochem Res 19:1131–1137

    Article  Google Scholar 

  4. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214

    Article  CAS  Google Scholar 

  5. Langseth L (1996) Oxidants, antioxidants and disease prevention. International Life Science Institute, Brussels

  6. Cadenas E, Davies KJ (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radical Biol Med 29:222–230

    Article  CAS  Google Scholar 

  7. McCord JM (1998) Iron, free radicals, and oxidative injury. Semin Hematol 35:5–12

    CAS  Google Scholar 

  8. Gordon MH (1990) The mechanism of antioxidant action in vitro. In: Hudson BJF (ed) Food antioxidants. Elsevier, New York, pp 1–18

  9. Singh BK, Sharma SR, Singh B (2010) Antioxidant enzymes in cabbage: variability and inheritance of superoxide dismutase, peroxidase and catalase. Sci Hort 124:9–13

    Article  CAS  Google Scholar 

  10. Wright JS, Johnson ER, DiLabio GA (2001) Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc 123:1173–1183

    Article  CAS  Google Scholar 

  11. Vafiadis AP, Bakalbassis EG (2005) A DFT study on the deprotonation antioxidant mechanistic step of ortho-substituted phenolic cation radicals. Chem Phys 316:195–204

    Article  CAS  Google Scholar 

  12. Musialik M, Litwinienko G (2005) Scavenging of DPPH• radicals by vitamin E is accelerated by its partial ionization: the role of sequential proton loss electron transfer. Org Lett 7:4951–4954

    Article  CAS  Google Scholar 

  13. Genestra M (2007) Oxyl radicals, redox-sensitive signaling cascades and antioxidants. Cell Signal 19:1807–1819

    Article  CAS  Google Scholar 

  14. Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H (2002) Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med 32:1102–1115

    Article  CAS  Google Scholar 

  15. Helguera AM, Combes RD, Gonzalez MP, Cordeiro MN (2008) Applications of 2D descriptors in drug design: a DRAGON tale. Curr Top Med Chem 8:1628–1655

    Article  CAS  Google Scholar 

  16. Gonzalez MP, Teran C, Saiz-Urra L, Teijeira M (2008) Variable selection methods in QSAR: an overview. Curr Top Med Chem 8:1606–1627

    Article  CAS  Google Scholar 

  17. Hansch C, Maloney PP, Fujita T, Muir RM (1962) Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature 194:178–180

    Article  CAS  Google Scholar 

  18. Cheng Z, Ren J, Li Y, Chang W, Chen Z (2002) Study on the multiple mechanisms underlying the reaction between hydroxyl radical and phenolic compounds by qualitative structure and activity relationship. Bioorg Med Chem 10:4067–4073

    Article  CAS  Google Scholar 

  19. Singh N, Loader RJ, O’Malley PJ, Popelier PLA (2006) Computation of relative bond dissociation enthalpies (DBDE) of phenolic antioxidants from quantum topological molecular similarity (QTMS). J Phys Chem A 110:6498–6503

    Article  CAS  Google Scholar 

  20. Reis M, Lobato B, Lameira J, Santos AS, Alves CN (2007) A theoretical study of phenolic compounds with antioxidant properties. Eur J Med Chem 42:440–446

    Article  CAS  Google Scholar 

  21. Mitra I, Saha A, Roy K (2009) Quantitative structure–activity relationship modeling of antioxidant activities of hydroxybenzalacetones using quantum chemical, physicochemical and spatial descriptors. Chem Biol Drug Des 73:526–536

    Article  CAS  Google Scholar 

  22. Mitra I, Roy K, Saha A (2009) QSAR of antilipid peroxidative activity of substituted benzodioxoles using chemometric tools. J Comput Chem 30:2712–2722

    Article  CAS  Google Scholar 

  23. Mitra I, Saha A, Roy K (2010) Pharmacophore mapping of arylamino-substituted benzo[b]thiophenes as free radical scavengers. J Mol Model 16:1585–1596

    Article  CAS  Google Scholar 

  24. Roy K, Mitra I (2009) Advances in quantitative structure–activity relationship models of antioxidants. Expert Opin Drug Discov 4:1157–1175

    Article  CAS  Google Scholar 

  25. Samee W, Nunthanavanit P, Ungwitayatorn J (2008) 3D-QSAR investigation of synthetic antioxidant chromone derivatives by molecular field analysis. Int J Mol Sci 9:235–246

    Article  Google Scholar 

  26. Samee W, Sae-Lee N, Ungwitayatorn J (2004) Structure-radical scavenging activity relationships of the synthesized chromone derivatives. J Pharm Sci 9:36–42

    Google Scholar 

  27. Leonard JT, Roy K (2006) On selection of training and test sets for the development of predictive QSAR models. QSAR Comb Sci 25:235–251

    Article  CAS  Google Scholar 

  28. Roy PP, Leonard JT, Roy K (2008) Exploring the impact of the size of training sets for the development of predictive QSAR models. Chemom Intell Lab Sys 90:31–42

    Article  CAS  Google Scholar 

  29. SPSS Inc. (2011) SPSS. SPSS Inc., Chicago. http://www.spss.com

  30. Smellie A, Teig SL, Towbin P (1995) Poling: promoting conformational variation. J Comput Chem 16:171–187

    Article  CAS  Google Scholar 

  31. Accelrys Inc (2010) Cerius 2, v.4.10. Accelrys Inc., San Diego

  32. Sutter J, Guner OF, Hoffman R, Li H, Waldman M (2000) HypoGen: an automated system for generating 3D predictive pharmacophore models. In: Guner OF (ed) Pharmacophore perception, development, and use in drug design. International University Line, La Jolla, pp 501–511

    Google Scholar 

  33. Mitra I, Saha A, Roy K (2010) Exploring quantitative structure–activity relationship (QSAR) studies of antioxidant phenolic compounds obtained from traditional Chinese medicinal plants. Mol Simul 36:1067–1079

    Article  CAS  Google Scholar 

  34. Golbraikh A, Tropsha A (2002) Beware of q 2! J Mol Graph Mod 20:269–276

    Google Scholar 

  35. Roy PP, Roy K (2008) On some aspects of variable selection for partial least squares regression models. QSAR Comb Sci 27:302–313

    Google Scholar 

  36. Roy PP, Paul S, Mitra I, Roy K (2009) On two novel parameters for validation of predictive QSAR models. Molecules 14:1660–1701

    Article  CAS  Google Scholar 

  37. Mitra I, Roy PP, Kar S, Ojha PK, Roy K (2010) On further application of \( {\text{r}}_{\text{m}}^{{2}} \) as a metric for validation of QSAR models. J Chemometrics 24:22–33

    Article  CAS  Google Scholar 

  38. Ojha PK, Mitra I, Das RN, Roy K (2011) Further exploring \( {\text{r}}_{\text{m}}^{{2}} \) metrics for validation of QSPR models. Chemom Intell Lab Syst 107:194–205

    Article  CAS  Google Scholar 

  39. Cramer RD III, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967

    Article  CAS  Google Scholar 

  40. Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37:4130–4146

    Article  CAS  Google Scholar 

  41. Streitwieser A (1961) Molecular orbital theory for organic chemists. Wiley, New York

    Google Scholar 

  42. White DNJ (1977) The principles and practice of molecular mechanics calculations. Comput Chem 1:225–233

    Article  CAS  Google Scholar 

  43. Kirkpatrick S, Gelatt CD, Vecchi MP Jr (1983) Optimization by simulated annealing. Science 220:671–680

    Article  CAS  Google Scholar 

  44. Tripos Inc. (2006) SYBYL 7.3. Tripos Inc., St. Louis. http://www.tripos.com

  45. Wold S, Albano C, Dunn WJ III, Esbensen K, Hellberg S, Johansson E, Sjostrom M, Edlund U, Geladi P (1984) Multivariate data analysis in chemistry. In: Kowalski B (ed) Chemometrics: mathematics and statistics in chemistry. Reidel, Dordrecht

  46. Hoskuldsson A (1987) PLS regression methods. J Chemometrics 2:211–228

    Article  Google Scholar 

  47. Clark RD, Fox PC (2004) Statistical variation in progressive scrambling. J Comput Aided Mol Des 18:563–576

    Article  CAS  Google Scholar 

  48. Doddareddy MR, Lee YJ, Cho YS, Choi KI, Koh HY, Pae AN (2004) Hologram quantitative structure activity relationship studies on 5-HT6 antagonists. Bioorg Med Chem 12:3815–3824

    Article  CAS  Google Scholar 

  49. Wold S, Johansson E, Cocchi M (1993) PLS: partial least squares projections to latent structures. In: Kubiniyi H (ed) 3D QSAR in drug design: theory, methods and applications. ESCOM, Leiden, pp 523–550

  50. Ajmani S, Jadhav K, Kulkarni SA (2009) Group-based QSAR (G-QSAR): mitigating interpretation challenges in QSAR. QSAR Comb Sci 28:36–51

    Article  CAS  Google Scholar 

  51. VLife Sciences Technologies Pvt. Ltd. (2007) VLife MDS 3.5. VLife Sciences Technologies Pvt. Ltd., Pune. http://www.vlifesciences.com

  52. Darlington RB (1990) Regression and linear models. McGraw-Hill, New York

    Google Scholar 

  53. Snedecor GW, Cochran WG (1967) Statistical methods. Oxford & IBH, New Delhi

    Google Scholar 

  54. Stephens MA (1976) Asymptotic results for goodness-of-fit statistics with unknown parameters. Ann Stat 4:357–369

    Article  Google Scholar 

  55. Massey FJ Jr (1951) The Kolmogorov–Smirnov test for goodness of fit. J Am Stat Assoc 46:68–78

    Google Scholar 

  56. Lilliefors HW (1967) On the Kolmogorov–Smirnov test for normality with mean and variance unknown. J Am Stat Assoc 64:399–402

    Google Scholar 

  57. Gramatica P (2007) Principles of QSAR models validation: internal and external. QSAR Comb Sci 26:694–701

    Article  CAS  Google Scholar 

  58. Eriksson L, Jaworska J, Worth AP, Cronin MT, McDowell RM, Gramatica P (2003) Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ Health Perspect 111:1361–1375

    Google Scholar 

  59. Patrick GL (2009) An introduction to medicinal chemistry. Oxford University Press, New York

    Google Scholar 

  60. Wang R, Gao Y, Lai L (2000) Calculating partition coefficient by atom-additive method. Perspect Drug Discov 19:47–66

    Article  CAS  Google Scholar 

  61. Todeschini R, Consonni V, Maiocchi A (1999) The K correlation index: theory development and its applications in chemometrics. Chemom Intell Lab Syst 46:13–29

    Article  CAS  Google Scholar 

  62. Todeschini R (1997) Data correlation, number of significant principal components and shape of molecules. The K correlation index. Anal Chim Acta 348:419–430

    Article  CAS  Google Scholar 

  63. Umetrics AB (2002) SIMCA-P 10.0. Umetrics AB, Umea. http://www.umetrics.com

  64. Golbraikh A, Shen M, Xiao ZY, Xiao YD, Lee KH, Tropsha A (2003) Rational selection of training and test sets for the development of validated QSAR models. Comput Aided Mol Des 17:241–253

    Article  CAS  Google Scholar 

  65. Zhu H, Tropsha A, Fourches D, Varnek A, Papa E, Gramatica P, Oberg T, Dao P, Cherkasov A, Tetko IV (2008) Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis. J Chem Inf Model 48:766–784

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work is supported in the form of a major research project to K.R. and a senior research fellowship to I.M. by the Indian Council of Medical Research (ICMR), New Delhi. We thank the anonymous reviewers for useful comments. The authors thank VLife Sciences Technologies Pvt. Ltd., Pune for providing complimentary evaluation license of the software VLife MDS 3.5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunal Roy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 511 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitra, I., Saha, A. & Roy, K. Development of multiple QSAR models for consensus predictions and unified mechanistic interpretations of the free-radical scavenging activities of chromone derivatives. J Mol Model 18, 1819–1840 (2012). https://doi.org/10.1007/s00894-011-1198-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1198-x

Keyword

Navigation