Skip to main content
Log in

Mechanism of intermolecular hydroacylation of vinylsilanes catalyzed by a rhodium(I) olefin complex: a DFT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) was used to investigate the Rh(I)-catalyzed intermolecular hydroacylation of vinylsilane with benzaldehyde. All intermediates and transition states were optimized completely at the B3LYP/6-31G(d,p) level (LANL2DZ(f) for Rh). Calculations indicated that Rh(I)-catalyzed intermolecular hydroacylation is exergonic, and the total free energy released is −110 kJ mol−1. Rh(I)-catalyzed intermolecular hydroacylation mainly involves the active catalyst CA2, rhodium–alkene–benzaldehyde complex M1, rhodium–alkene–hydrogen–acyl complex M2, rhodium–alkyl–acyl complex M3, rhodium–alkyl–carbonyl–phenyl complex M4, rhodium–acyl–phenyl complex M5, and rhodium–ketone complex M6. The reaction pathway CA2 + R2M1bT1bM2bT2b1M3b1T4bM4bT5bM5bT6bM6bP2 is the most favorable among all reaction channels of Rh(I)-catalyzed intermolecular hydroacylation. The reductive elimination reaction is the rate-determining step for this pathway, and the dominant product predicted theoretically is the linear ketone, which is consistent with Brookhart’s experiments. Solvation has a significant effect, and it greatly decreases the free energies of all species. The use of the ligand Cp′ (Cp′ = C5Me4CF3) decreased the free energies in general, and in this case the rate-determining step was again the reductive elimination reaction.

Rh(I)-catalyzed intermolecular hydroacylation was investigated using density functional theory (DFT). This study suggests that the hydroacylation is exergonic, and that the dominant product is the linear ketone

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jun CH, Lee JH (2004) Pure Appl Chem 76:577–587

    Article  CAS  Google Scholar 

  2. Jia C, Kitamura T, Fujiwara Y (2001) Acc Chem Res 34:633–639

    Article  CAS  Google Scholar 

  3. Kakiuchi F, Murai S (1999) Top Organomet Chem 3:47–79

    Article  CAS  Google Scholar 

  4. Guari Y, Sabo-Etienne S, Chaudret B (1999) Eur J Inorg Chem 1047–1055

  5. Arndtsen BA, Bergman RG, Mobley A, Peterson TH (1995) Acc Chem Res 28:154–162

    Article  CAS  Google Scholar 

  6. Shilov AE, Shul’pin GB (1997) Chem Rev 97:2879–2932

    Google Scholar 

  7. Dyker G (1999) Angew Chem Int Ed 38:1698–1712

    Article  Google Scholar 

  8. Ritleng V, Sirlin C, Pfeffer M (2002) Chem Rev 102:1731–1770

    Article  CAS  Google Scholar 

  9. Labinger JA, Bercaw JE (2002) Nature 417:507–514

    Article  CAS  Google Scholar 

  10. Kakiuchi F, Murai S (2002) Acc Chem Res 35:826–834

    Article  CAS  Google Scholar 

  11. Inoue SI, Takaya H, Tani K, Otsuka S, Sato T, Noyori R (1990) J Am Chem Soc 112:4897–4905

    Article  CAS  Google Scholar 

  12. Bergens SH, Bosnich B (1991) J Am Chem Soc 113:958–967

    Article  CAS  Google Scholar 

  13. Barnhart RW, Wang XQ, Noheda P, Bergens SH, Whelan J, Bosnich B (1994) J Am Chem Soc 116:1821–1830

    Article  CAS  Google Scholar 

  14. Jun CH, Hong JB, Lee DY (1999) Synlett 1–12

  15. Aloise AD, Layton ME, Shair MD (2000) J Am Chem Soc 122:12610–12611

    Article  CAS  Google Scholar 

  16. Jun CH, Chung JH, Lee DY, Loupy A, Chatti S (2001) Tetrahedron Lett 42:4803–4805

    Article  CAS  Google Scholar 

  17. Tanaka K, Fu GC (2001) J Am Chem Soc 123:11492–11493

    Article  CAS  Google Scholar 

  18. Willis MC, Sapmaz S (2001) Chem Commun 2558–2559

  19. Jun CH, Moon CW, Lee DY (2002) Chem Eur J 8:2422–2428

    Article  CAS  Google Scholar 

  20. Tanaka K, Fu GC (2003) J Am Chem Soc 125:8078–8079

    Article  CAS  Google Scholar 

  21. Takeishi K, Sugishima K, Sasaki K, Tanaka K (2004) Chem Eur J 10:5681–5688

    Article  CAS  Google Scholar 

  22. Jun CH, Jo EA, Park JW (2007) Eur J Org Chem 1869–1881

  23. Roy AH, Lenges CP, Brookhart M (2007) J Am Chem Soc 129:2082–2093

    Article  CAS  Google Scholar 

  24. Moxham GL, Randell-Sly H, Brayshaw SK, Weller AS, Willis MC (2008) Chem Eur J 14:8383–8397

    Article  CAS  Google Scholar 

  25. Hyatt IFD, Anderson HK, Morehead AT, Sargent AL (2008) Organometallics 27:135–147

    Article  CAS  Google Scholar 

  26. Chung LW, Wiest O, Wu YD (2008) J Org Chem 73:2649–2655

    Article  CAS  Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven JT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PW, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision B.03. Gaussian, Inc., Pittsburgh

  28. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

  29. Pisano L, Farriol M, Asensio X, Gallardo I, González-Lefont A, Lluch JM, Marquet J (2002) J Am Chem Soc 124:4708–4715

    Article  CAS  Google Scholar 

  30. Pierini AB, Vera DMA (2003) J Org Chem 68:9191–9199

    Article  CAS  Google Scholar 

  31. Pratt DA, Heer ML, Mulder P, Ingold KU (2001) J Am Chem Soc 123:5518–5526

    Article  CAS  Google Scholar 

  32. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  33. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  34. Ehlers AW, Böhme M, Dapprich S, Gobbi A, Höllwarth A, Jonas V, Köhler KF, Stegmann R, Veldkamp A, Frenking G (1993) Chem Phys Lett 208:111–114

    Article  CAS  Google Scholar 

  35. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527

    Article  CAS  Google Scholar 

  36. Flükiger P, Lüthi HP, Portmann S, Weber J (2000–2002) MOLEKEL 4.3. Swiss Center for Scientific Computing, Manno

  37. Portmann S, Lüthi HP (2000) Chimia 54:766–770

    CAS  Google Scholar 

  38. Miertus S, Tomasi J (1982) Chem Phys 65:239–245

    Article  CAS  Google Scholar 

  39. Bader RFW (1990) Atoms in molecules—a quantum theory (Int Ser Monogr Chem vol 22). Oxford University Press, Oxford

  40. Bader RFW, Popelier PLA, Keith TA (1994) Angew Chem Int Ed Engl 33:620–631

    Article  Google Scholar 

  41. Carpenter JE, Weinhold F (1988) J Mol Struct (THEOCHEM) 169:41–50

    Google Scholar 

  42. Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211–7218

    Article  CAS  Google Scholar 

  43. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  44. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  45. Biegler-König F, Schönbohm J, Derdau R, Bayles D, Bader RFW (2002) AIM 2000, version 2.0. McMaster University, Hamilton

  46. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) NBO 5.0. Theoretical Chemistry Institute, University of Wisconsin, Madison

  47. Gorelsky SI, Lever ABP (2001) J Organomet Chem 635:187–196

    Article  CAS  Google Scholar 

  48. Gorelsky SI (1997) AOMix: program for molecular orbital analysis. York University, Toronto. http://www.sg-chem.net/

  49. Gorelsky SI, Ghosh S, Solomon EI (2006) J Am Chem Soc 128:278–290

    Article  CAS  Google Scholar 

  50. Gao JG, Wang F, Meng QX, Li M (2009) Mol Simulat 35:419–427

    Article  CAS  Google Scholar 

  51. Wang F, Meng QX, Li M (2010) Int J Quantum Chem 110:850–859

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Project of Science and Technology of the Ministry of Education, P.R. (grant no. 104263), Natural Science Foundation of Chongqing City, P.R. (grant no. CSTC-2004BA4024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Li.

Electronic supplementary material

Computational details about the energies and detailed structures of the stationary points in the reactions are given in the electronic supplementary material.

ESM 1

(DOC 1936 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, Q., Shen, W. & Li, M. Mechanism of intermolecular hydroacylation of vinylsilanes catalyzed by a rhodium(I) olefin complex: a DFT study. J Mol Model 18, 1229–1239 (2012). https://doi.org/10.1007/s00894-011-1151-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1151-z

Keywords

Navigation