Skip to main content

Advertisement

Log in

Homology modeling, molecular dynamics and QM/MM study of the regulatory protein PhoP from Corynebacterium pseudotuberculosis

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Corynebacterium pseudotuberculosis is a facultatively intracellular Gram-positive bacterium that causes caseous lymphadenitis, principally in sheep and goats, though sometimes in other species of animals, leading to considerable economic losses. This pathogen has a TCS known as PhoPR, which consists of a sensory histidine kinase protein (PhoR) and an intracellular response regulator protein (PhoP). This system is involved in the regulation of proteins present in various processes, including virulence. The regulation is activated by PhoP protein phosphorylation, an event that requires a magnesium (Mg2+) ion. Here we describe the 3D structure of the regulatory response protein (PhoP) of C. pseudotuberculosis through molecular modeling by homology. The model generated provides the first structural information on a full-length member of the OmpR/PhoP subfamily. Classical molecular dynamics was used to investigate the stability of the model. In addition, we used quantum mechanical/molecular mechanical techniques to perform (internal, potential) energy optimizations to determine the interaction energy between the Mg2+ ion and the structure of the PhoP protein. Analysis of the interaction energy residue by residue shows that Asp-16 and Asp-59 play an important role in the protein–Mg2+ ion interactions. These results may be useful for the future development of a new vaccine against tuberculosis based on genetic attenuation via a point mutation that results in the polar residue Asp-16 and/or Asp-59 being replaced with a nonpolar residue in the DNA-binding domain of PhoP of C. pseudotuberculosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dorella FA, Pacheco LG, Oliveira SC, Miyoshi A, Azevedo V (2006) Corynebacterium pseudotuberculosis: microbiology, biochemical properties, pathogenesis and molecular studies of virulence. J Vet Res 37:1–18

    Article  Google Scholar 

  2. Comer FI, Hart GW (2000) O-glycosylation of nuclear and cytosolic proteins. Dynamic interplay between O-GlcNAc and O-phosphate. J Biol Chem 275:29179–29182

    Google Scholar 

  3. Stoops SG, Renshaw HW, Thilsted JP (1984) Ovine caseous lymphadenitis: disease prevalence, lesion distribution, and thoracic manifestation in a population of mature culled sheep from Western United States. J Vet Res 45:557–561

    CAS  Google Scholar 

  4. Alves FSF, Pinheiro RR, Pires PC (1997) Linfadenite caseosa: patogenia, diagnóstico e controle (Embrapa Caprinos Doc 27). EmbrapaCaprinos, Sobral

  5. Olson ME, Ceri H, Morck DW, Buret AG, Read RR (2002) Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res 66:86–92

    Google Scholar 

  6. Chaplin PJ, De Rose R, Boyle JS, Mcwaters P, Kelly J, Tennent JM, Lew AM, Scheerlinck JPY (1999) Targeting improves the efficacy of a DNA vaccine against Corynebacterium pseudotuberculosis in sheep. Infect Immun 67:6434–6438

    CAS  Google Scholar 

  7. Songer JG (1997) Bacterial phospholipases and their role in virulence. Trends Microbiol 5:156–160

    Article  CAS  Google Scholar 

  8. Mckean SC, Davies JK, Moore RJ (2007) Expression of phospholipase D, the major virulence factor of Corynebacterium pseudotuberculosis, is regulated by multiple environmental factors and plays a role in macrophage death. Microbiol 153:2203–2211

    Article  CAS  Google Scholar 

  9. Ryndak Wang MS, Smith I (2008) PhoP, a key player in Mycobacterium tuberculosis virulence. Trends Microbiol 198:877–885

    Google Scholar 

  10. Gonsalo-Asensio J, Mostowy S, Harders-Westerveen J, Huygen K, Hernàndez-Pando R, Thole J, Behr M, Gicquel B, Martín C (2008) PhoP: a missing piece in the intricate puzzle of Mycobacterium tuberculosis virulence. PLoS One 3:e3496

  11. Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215

    Article  CAS  Google Scholar 

  12. Ninfa AJ, Magasanik B (1986) Covalent modification of the ginG product, NRI, by the glnL product, NRII, regulates the transcription of the glnALG operon in Escherichia coli. Proc Natl Acad Sci USA 83:5909–5913

    Article  CAS  Google Scholar 

  13. Buckler DR, Zhou Y, Stock AM (2002) Evidence of intradomain and interdomain in an OmpR/PhoP homolog from Thermotoga maritime. Structure 10:153–164

    Google Scholar 

  14. Kurosu M, Begari E (2010) Bacterial protein kinase inhibitors. Drug Dev Res 71:168–187

    CAS  Google Scholar 

  15. Hohmann EL, Oletta CA, Miller SI (1996) Evaluation of a phoP/phoQ deleted. aroA deleted live oral S. typhi vaccine strain in human volunteers. Vaccine 14:9–24

    Article  Google Scholar 

  16. Angelakopoulos H, Hohmann EL (2000) Pilot study of phoP/phoQ-deleted Salmonella enterica serovar typhimurium expressing Helicobacter pylori urease in adult volunteers. Infect Immun 68:2135–2141

    Article  CAS  Google Scholar 

  17. Höltje HD, Sippl W, Rognan D, Folkers G (eds)(2003) Introduction to comparative protein modeling. In: Molecular modeling: basic principles and applications, 3rd edn. Wiley-VCH, Weinheim, pp 111–124

  18. Dorella FA, Fachin MS, Billault A, Dias Neto E, Soravito C, Oliveira SC, Meyer R, Miyoshi A, Azevedo V (2006) Construction and partial characterization of a Corynebacterium pseudotuberculosis bacterial artificial chromosome library through genomic survey sequencing. Genet Mol Res 5:653–663

    CAS  Google Scholar 

  19. Finn R, Mistry J, Tate J, Coggill P, Heger A, Pollington J, Gavin OL, Ceric G, Forslund K, Holm L, Sonnhammer ELL, Eddy S, Bateman A (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222

    Article  CAS  Google Scholar 

  20. Hoch JA, Silhavy TJ (1995) Two-component signal transduction. ASM, Washington, DC

  21. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  Google Scholar 

  22. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucl Acids Res 28:235–242

    Article  CAS  Google Scholar 

  23. The UniProt Consortium (2008) The Universal Protein Resource (UniProt). Nucl Acids Res 36:D190–D195

    Article  Google Scholar 

  24. Eisenberg D, Luthy R, Bowie JU (1997) VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol 277:396–404

    Article  CAS  Google Scholar 

  25. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410

    Article  Google Scholar 

  26. Melo F, Feytmans E (1998) Assessing protein structures with a non-local atomic interaction energy. J Mol Biol 277:1141–1152

    Article  CAS  Google Scholar 

  27. Alves CN, Martí S, Castillo R, Andrés J, Moliner V, Tuñón I, Silla E (2008) A quantum mechanic/molecular mechanic study of the wild-type and N155S mutant HIV-1 integrase complexed with diketo acid. Biophys J 94:2443–2451

    Article  CAS  Google Scholar 

  28. Lameira J, Alves CN, Moliner V, Martí S, Castillo R, Tunón I (2010) Quantum mechanical/molecular mechanical molecular dynamics simulation of wild-type and seven mutants of CpNagJ in complex with PUGNAc. J Phys Chem B 114:7029–7036

    Google Scholar 

  29. Nowak E, Panjikar S, Konarev P, Svergun D, Tucker P (2006) The structural basis of signal transduction for the response regulator PrrA from Mycobacterium tuberculosis. J Biol Chem 281:9659–9666

    Article  CAS  Google Scholar 

  30. Delphine CB, David MR, Jan HJ (2008) Very fast prediction and rationalization of pι a values for protein–ligand complexes. Proteins 73:765–783

    Google Scholar 

  31. Byrd RH, Lu PH, Nocedal J, Zhu CY (1995) A limited memory algorithm for bound constrained optimization. SIAM J Sci Comput 16:1190–1208

    Google Scholar 

  32. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Google Scholar 

  33. Field MJ, Albe M, Bret C, Martin FP, Thomas A (2000) The dynamo library for molecular simulations using hybrid quantum mechanical and molecular mechanical potentials. J Comput Chem 21:1088–1100

    Article  CAS  Google Scholar 

  34. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  35. Martinez-Hackert E, Stock AM (1997) Structural relationships in the OmpR family of winged helix transcription factors. J Mol Biol 269:301–312

    Google Scholar 

  36. Wang S, Engohang-Ndong J, Smith I (2007) Structure of the DNA-binding domain of the response regulator PhoP from Mycobacterium tuberculosis. Biochem 46:14751–14761

    Article  CAS  Google Scholar 

  37. Solà M, Drew DL, Blanco AG, Gomis-Ruth FX, Coll M (2006) The cofactor-induced pre-active conformation in PhoB. Acta Cryst 62:1046–1057

    Google Scholar 

  38. Yuan Z, Bailey TL, Teasdaleref RD (2005) Prediction of protein B-factor profiles. Proteins 58:905–912

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazilian Agencies) for their financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerônimo Lameira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 518 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moraes, G., Azevedo, V., Costa, M. et al. Homology modeling, molecular dynamics and QM/MM study of the regulatory protein PhoP from Corynebacterium pseudotuberculosis . J Mol Model 18, 1219–1227 (2012). https://doi.org/10.1007/s00894-011-1145-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1145-x

Keywords

Navigation