Skip to main content
Log in

Studies of H4R antagonists using 3D-QSAR, molecular docking and molecular dynamics

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Three-dimensional quantitative structure–activity relationship studies were performed on a series of 88 histamine receptor 4 (H4R) antagonists in an attempt to elucidate the 3D structural features required for activity. Several in silico modeling approaches, including comparative molecular field analysis (CoMFA), comparative similarity indices analysis (CoMSIA), molecular docking, and molecular dynamics (MD), were carried out. The results show that both the ligand-based CoMFA model (Q 2 = 0.548, R 2ncv  = 0.870, R 2pre  = 0.879, SEE = 0.410, SEP = 0.386) and the CoMSIA model (Q 2 = 0.526, R 2ncv =0.866, R 2pre  = 0.848, SEE = 0.416, SEP = 0.413) are acceptable, as they show good predictive capabilities. Furthermore, a combined analysis incorporating CoMFA, CoMSIA contour maps and MD results shows that (1) compounds with bulky or hydrophobic substituents at positions 4–6 in ring A (R2 substituent), positively charged or hydrogen-bonding (HB) donor groups in the R1 substituent, and hydrophilic or HB acceptor groups in ring C show enhanced biological activities, and (2) the key amino acids in the binding pocket are TRP67, LEU71, ASP94, TYR95, PHE263 and GLN266. To our best knowledge, this work is the first to report the 3D-QSAR modeling of these H4R antagonists. The conclusions of this work may lead to a better understanding of the mechanism of antagonism and aid in the design of new, more potent H4R antagonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

QSAR:

Quantitative structure–activity relationship

3D-QSAR:

Three-dimensional quantitative structure–activity relationship

HR:

Histamine receptors

H4R:

Histamine receptor 4

GPCR:

G-protein-coupled receptor

H4R:

Histamine receptor 4

CADD:

Computer-aided drug design

CoMFA:

Comparative molecular field analysis

CoMSIA:

Comparative similarity index analysis

MD:

Molecular dynamics

HB:

Hydrogen bond

RMSD:

Root mean square deviation

SEE:

Standard error of estimates

SEP:

Standard error of prediction

Q 2 :

Cross-validated correlation coefficient after the leave-one-out procedure

R 2ncv :

Non-cross-validated correlation coefficient

F ratio of R 2ncv :

Explained to unexplained R 2ncv ratio = R 2ncv /(1 − R 2ncv )

R 2pre :

Predicted correlation coefficient for the test set of compounds

OPN:

Optimal number of principal components

PLS:

Partial least squares

PCs:

Principal components

LOO:

Leave-one-out

References

  1. Hsieh GC, Chandran P, Salyers AK, Pai M, Zhu CZ, Wensink EJ, Witte DG, Miller TR, Mikusa JP, Baker SJ, Wetter JM, Marsh KC, Hancock AA, Cowart MD, Esbenshade TA, Brioni JD, Honore P (2010) H4 receptor antagonism exhibits anti-nociceptive effects in inflammatory and neuropathic pain models in rats. Pharmacol Biochem Behav 95:41–50

    Google Scholar 

  2. Crane K, Shih DT (2004) Development of a homogeneous binding assay for histamine receptors. Anal Biochem 335:42–49

    Article  CAS  Google Scholar 

  3. Smits RA, Leurs R, de Esch IJ (2009) Major advances in the development of histamine H4 receptor ligands. Drug Discov Today 14(15–16):745–753

    Google Scholar 

  4. Kiss R, Noszal B, Racz A, Falus A, Eros D, Keseru GM (2008) Binding mode analysis and enrichment studies on homology models of the human histamine H4 receptor. Eur J Med Chem 43:1059–1070

    Article  CAS  Google Scholar 

  5. Hsieh GC, Chandran P, Salyers AK, Pai M, Zhu CZ, Wensink EJ, Witte DG, Miller TR, Mikusa JP, Baker SJ, Wetter JM, Marsh KC, Hancock AA, Cowart MD, Esbenshade TA, Brioni JD, Honore P (2009) H4 receptor antagonism exhibits anti-nociceptive effects in inflammatory and neuropathic pain models in rats. Pharmacol Biochem Behav 95:41–50

    Article  Google Scholar 

  6. Lee-Dutra A, Arienti KL, Buzard DJ, Hack MD, Khatuya H, Desai PJ, Nguyen S, Thurmond RL, Karlsson L, Edwards JP, Breitenbucher JG (2006) Identification of 2-arylbenzimidazoles as potent human histamine H4 receptor ligands. Bioorg Med Chem Lett 16:6043–6048

    Article  CAS  Google Scholar 

  7. Cramp S, Dyke HJ, Higgs C, Clark DE, Gill M, Savy P, Jennings N, Price S, Lockey PM, Norman D, Porres S, Wilson F, Jones A, Ramsden N, Mangano R, Leggate D, Andersson M, Hale R (2010) Identification and hit-to-lead exploration of a novel series of histamine H4 receptor inverse agonists. Bioorg Med Chem Lett 20:2516–2519

    Article  CAS  Google Scholar 

  8. Zhang M, Thurmond RL, Dunford PJ (2007) The histamine H4 receptor: A novel modulator of inflammatory and immune disorders. Pharmacol Therapeut 113:594–606

    Article  CAS  Google Scholar 

  9. Igel P, Geyer R, Strasser A, Dove S, Seifert R, Buschauer A (2009) Synthesis and structure–activity relationships of cyanoguanidine-type and structurally related histamine H4 receptor agonists. J Med Chem 52:6297–6313

    Google Scholar 

  10. Sander K, Kottke T, Tanrikulu Y, Proschak E, Weizel L, Schneider EH, Seifert R, Schneider G, Stark H (2009) 2,4-Diaminopyrimidines as histamine H4 receptor ligands—scaffold optimization and pharmacological characterization. Bioorg Med Chem 17:7186–7196

    Google Scholar 

  11. Jablonowski JA, Grice CA, Chai W, Dvorak CA, Venable JD, Kwok AK, Ly KS, Wei J, Baker SM, Desai PJ, Jiang W, Wilson SJ, Thurmond RL, Karlsson L, Edwards JP, Lovenberg TW, Carruthers NI (2003) The first potent and selective non-imidazole human histamine H4 receptor antagonists. J Med Chem 46:3957–3960

    Article  CAS  Google Scholar 

  12. Altenbach RJ, Adair RM, Bettencourt BM, Black LA, Fix-Stenzel SR, Gopalakrishnan SM, Hsieh GC, Liu H, Marsh KC, McPherson MJ, Milicic I, Miller TR, Vortherms TA, Warrior U, Wetter JM, Wishart N, Witte DG, Honore P, Esbenshade TA, Hancock AA, Brioni JD, Cowart MD (2008) Structure–activity studies on a series of a 2-aminopyrimidine-containing histamine H4 receptor ligands. J Med Chem 51:6571–6580

    Article  CAS  Google Scholar 

  13. Taft CA, Da Silva VB, Da Silva CH (2008) Current topics in computer-aided drug design. J Pharm Sci 97:1089–1098

    Article  CAS  Google Scholar 

  14. Papa E, Battaini F, Gramatica P (2005) Ranking of aquatic toxicity of esters modelled by QSAR. Chemosphere 58:559–570

    Article  CAS  Google Scholar 

  15. Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 36:3219–3228

    Google Scholar 

  16. Artico M, Botta M, Corelli F, Mai A, Massa S, Ragno R (1996) Investigation on QSAR and binding mode of a new class of human rhinovirus-14 inhibitors by CoMFA and docking experiments. Bioorg Med Chem 4:1715–1724

    Article  CAS  Google Scholar 

  17. Rao CR, Wu Y (2005) Linear model selection by cross-validation. J Stat Plan Infer 128:231–240

    Article  Google Scholar 

  18. Wang X, Yang W, Xu X, Zhang H, Li Y, Wang Y (2010) Studies of benzothiadiazine derivatives as hepatitis C virus NS5B polymerase inhibitors using 3D-QSAR, molecular docking and molecular dynamics. Curr Med Chem 17:2788–2803

    Article  CAS  Google Scholar 

  19. Zhu YQ, Lei M, Lu AJ, Zhao X, Yin XJ, Gao QZ (2009) 3D-QSAR studies of boron-containing dipeptides as proteasome inhibitors with CoMFA and CoMSIA methods. Eur J Med Chem 44:1486–1499

    Article  CAS  Google Scholar 

  20. Wang Z, Li Y, Ai C, Wang Y (2010) In silico prediction of estrogen receptor subtype binding affinity and selectivity using statistical methods and molecular docking with 2-arylnaphthalenes and 2-arylquinolines. Int J Mol Sci 11:3434–3458

    Article  CAS  Google Scholar 

  21. Li Y, Wang Y-H, Yang L, Zhang S-W, Liu C-H, Yang S-L (2005) Comparison of steroid substrates and inhibitors of P-glycoprotein by 3D-QSAR analysis. J Mol Struct 733:111–118

    Article  CAS  Google Scholar 

  22. Xu M, Zhang A, Han S, Wang L (2002) Studies of 3D-quantitative structure–activity relationships on a set of nitroaromatic compounds: CoMFA, advanced CoMFA and CoMSIA. Chemosphere 48:707–715

    Google Scholar 

  23. Kovalishyn VV, Kholodovych V, Tetko IV, Welsh WJ (2007) Volume learning algorithm significantly improved PLS model for predicting the estrogenic activity of xenoestrogens. J Mol Graph Model 26:591–594

    Article  CAS  Google Scholar 

  24. Nayana MR, Sekhar YN, Nandyala H, Muttineni R, Bairy SK, Singh K, Mahmood SK (2008) Insight into the structural requirements of proton pump inhibitors based on CoMFA and CoMSIA studies. J Mol Graph Model 27:233–243

    Article  CAS  Google Scholar 

  25. Thaimattam R, Daga P, Rajjak SA, Banerjee R, Iqbal J (2004) 3D-QSAR CoMFA, CoMSIA studies on substituted ureas as Raf-1 kinase inhibitors and its confirmation with structure-based studies. Bioorg Med Chem 12:6415–6425

    Article  CAS  Google Scholar 

  26. Shahlaei M, Madadkar-Sobhani A, Mahnam K, Fassihi A, Saghaie L, Mansourian M (2011) Homology modeling of human CCR5 and analysis of its binding properties through molecular docking and molecular dynamics simulation. Biochem Biophys Acta 1808:802–817

    Google Scholar 

  27. Sander T, Liljefors T, Balle T (2008) Prediction of the receptor conformation for iGluR2 agonist binding: QM/MM docking to an extensive conformational ensemble generated using normal mode analysis. J Mol Graph Model 26:1259–1268

    Article  CAS  Google Scholar 

  28. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56

    Google Scholar 

  29. Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317

    CAS  Google Scholar 

  30. van Aalten DM, Bywater R, Findlay JB, Hendlich M, Hooft RW, Vriend G (1996) PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. J Comput Aided Mol Des 10:255–262

    Article  Google Scholar 

  31. Barreca ML, Ortuso F, Iraci N, De Luca L, Alcaro S, Chimirri A (2007) Tn5 transposase as a useful platform to simulate HIV-1 integrase inhibitor binding mode. Biochem Bioph Res Co 363:554–560

    Article  CAS  Google Scholar 

  32. Liu R, Li X, Li Y, Jin P, Qin W, Qi J (2009) Effective removal of rhodamine B from contaminated water using non-covalent imprinted microspheres designed by computational approach. Biosens Bioelectron 25:629–634

    Article  CAS  Google Scholar 

  33. Niu C, Xu Y, Luo X, Duan W, Silman I, Sussman JL, Zhu W, Chen K, Shen J, Jiang H (2005) Dynamic mechanism of E2020 binding to acetylcholinesterase: a steered molecular dynamics simulation. J Phys Chem B 109:23730–23738

    Article  CAS  Google Scholar 

  34. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) In: B Pullman (ed) Intermolecular forces. Reidel, Dordrecht, pp 331–342

  35. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phy 52:7182–7190

    Google Scholar 

  36. Lin J-H, Perryman AL, Schames JR, McCammon JA (2002) Computational drug design accommodating receptor flexibility: the relaxed complex scheme. J Am Chem Soc 124:5632–5633

    Google Scholar 

  37. Dixit A, Kashaw SK, Gaur S, Saxena AK (2004) Development of CoMFA, advance CoMFA and CoMSIA models in pyrroloquinazolines as thrombin receptor antagonist. Bioorg Med Chem 12:3591–3598

    Article  CAS  Google Scholar 

  38. Ashek A, Cho SJ (2006) A combined approach of docking and 3D QSAR study of [beta]-ketoacyl-acyl carrier protein synthase III (FabH) inhibitors. Bioorg Med Chem 14:1474–1482

    Article  CAS  Google Scholar 

  39. Politi A, Durdagi S, Moutevelis-Minakakis P, Kokotos G, Mavromoustakos T (2010) Development of accurate binding affinity predictions of novel renin inhibitors through molecular docking studies. J Mol Graph Model 29:425–435

    Article  CAS  Google Scholar 

  40. Wang Y, Li Y, Ma Z, Yang W, Ai C (2010) Mechanism of microRNA–target interaction: molecular dynamics simulations and thermodynamics analysis. PLoS Comput Biol 6:e1000866

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Armin Buschauer and his colleagues for providing us with the homology model of the H4R protein structure. This work is supported by the National Natural Science Foundation of China (grant no. 10801025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 511 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Li, Y., Zhang, HX. et al. Studies of H4R antagonists using 3D-QSAR, molecular docking and molecular dynamics. J Mol Model 18, 991–1001 (2012). https://doi.org/10.1007/s00894-011-1137-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1137-x

Keywords

Navigation