Skip to main content
Log in

In silico screening of epidermal growth factor receptor (EGFR) in the tyrosine kinase domain through a medicinal plant compound database

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The unregulated epidermal growth factor receptor tyrosine kinase (ErbB1-TK or EGFR-TK) protein is involved in the proliferation of more than 50% of all cancer types. The reduction of EGFR-TK activity by small or medium-sized molecules has been proven to be an effective treatment for cancer. There is a widespread belief that Chinese medicinal herbs are active against several diseases, including various types of cancer. In this study, 29,960 compounds from the Chemiebase medicinal compound database were virtually screened against the EGFR-TK using AutoDock4.0, GOLD and GLIDE (XP). The results revealed eight potential hits: CAS nos. 104096-45-9, 112649-21-5, 113866-89-0, 142608-98-8, 142608-99-9, 144761-33-1, 155233-17-3 and 80510-05-0. These compounds have been reported to show anticancer activities in the literature. With the help of SiMMap and MOE interaction analysis, the protein–ligand interaction patterns between the functional groups of these compounds and the binding pocket residues were analyzed. Hydrogen bonding and hydrophobic forces are the main components of the interactions of these hits, similar to those observed for the known inhibitors erlotinib, gefitinib and AEE. The physicochemical filter indicates that compounds CAS nos. 104096-45-9 and 144761-33-1 are likely to be potential leads in the drug discovery process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Paul MK, Mukhopadhyay AK (2004) Tyrosine kinase—role and significance in cancer. Int J Med Sci 1:101–115

    Google Scholar 

  2. Harari PM, Huang SM (2002) Epidermal growth factor receptor modulation of radiation response: preclinical and clinical development. Semin Radiat Oncol 12:21–26

    Article  Google Scholar 

  3. Choong NW, Ma PC, Salgia R (2005) Therapeutic targeting of receptor tyrosine kinases in lung cancer. Expert Opin Ther Targets 9:533–559

    Article  CAS  Google Scholar 

  4. Cavasotto CN, Ortiz MA, Abagyan RA, Piedrafita FJ (2006) In silico identification of novel EGFR inhibitors with antiproliferative activity against cancer cells. Bioorg Med Chem Lett 16:1969–1974

    Google Scholar 

  5. Janmaat ML, Giaccone G (2003) Small-molecule epidermal growth factor receptor tyrosine kinase inhibitors. Oncologist 8:576–586

    Article  CAS  Google Scholar 

  6. Xu G, Abad MC, Connolly PJ, Neeper MP, Struble GT, Springer BA, Emanuel SL, Pandey N, Gruninger RH, Adams M, Moreno-Mazza S, Fuentes-Pesquera AR, Middleton SA (2008) 4-Amino-6-arylamino-pyrimidine-5-carbaldehyde hydrazones as potent ErbB-2/EGFR dual kinase inhibitors. Bioorg Med Chem Lett 18:4615–4619

    Article  CAS  Google Scholar 

  7. Xu G, Searle LL, Hughes TV, Beck AK, Connolly PJ, Abad MC, Neeper MP, Struble GT, Springer BA, Emanuel SL, Gruninger RH, Pandey N, Adams M, Moreno-Mazza S, Fuentes-Pesquera AR, Middleton SA, Greenberger LM (2008) Discovery of novel 4-amino-6-arylaminopyrimidine-5-carbaldehyde oximes as dual inhibitors of EGFR and ErbB-2 protein tyrosine kinases. Bioorg Med Chem Lett 18:3495–3499

    Article  CAS  Google Scholar 

  8. Moyer JD, Barbacci EG, Iwata KK, Arnold L, Boman B, Cunningham A, DiOrio C, Doty J, Morin MJ, Moyer MP, Neveu M, Pollack VA, Pustilnik LR, Reynolds MM, Sloan D, Theleman A, Miller P (1997) Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res 57:4838–4848

    CAS  Google Scholar 

  9. Rusnak DW, Lackey K, Affleck K, Wood ER, Alligood KJ, Rhodes N, Keith BR, Murray DM, Knight WB, Mullin RJ, Gilmer TM (2001) The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol Cancer Ther 1:85–94

    CAS  Google Scholar 

  10. Arteaga CL, Johnson DH (2001) Tyrosine kinase inhibitors—ZD1839 (Iressa). Curr Opin Oncol 13:491–498

    Google Scholar 

  11. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98:10037–10041

    Article  CAS  Google Scholar 

  12. Hennequin LF, Stokes ES, Thomas AP, Johnstone C, Ple PA, Ogilvie DJ, Dukes M, Wedge SR, Kendrew J, Curwen JO (2002) Novel 4-anilinoquinazolines with C-7 basic side chains: design and structure activity relationship of a series of potent, orally active, VEGF receptor tyrosine kinase inhibitors. J Med Chem 45:1300–1312

    Article  CAS  Google Scholar 

  13. Rabindran SK, Discafani CM, Rosfjord EC, Baxter M, Floyd MB, Golas J, Hallett WA, Johnson BD, Nilakantan R, Overbeek E, Reich MF, Shen R, Shi X, Tsou HR, Wang YF, Wissner A (2004) Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res 64:3958–3965

    Article  CAS  Google Scholar 

  14. Li D, Ambrogio L, Shimamura T, Kubo S, Takahashi M, Chirieac LR, Padera RF, Shapiro GI, Baum A, Himmelsbach F, Rettig WJ, Meyerson M, Solca F, Greulich H, Wong KK (2008) BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 27:4702–4711

    Article  CAS  Google Scholar 

  15. Minkovsky N, Berezov A (2008) BIBW-2992, a dual receptor tyrosine kinase inhibitor for the treatment of solid tumors. Curr Opin Investig Drugs 9:1336–1346

    CAS  Google Scholar 

  16. Riely GJ (2008) Second-generation epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. J Thorac Oncol 3:S146–S149

    Article  Google Scholar 

  17. Bayes M, Rabasseda X, Prous JR (2005) Gateways to clinical trials. Methods Find Exp Clin Pharmacol 27:49–77

    CAS  Google Scholar 

  18. Smaill JB, Rewcastle GW, Loo JA, Greis KD, Chan OH, Reyner EL, Lipka E, Showalter HD, Vincent PW, Elliott WL, Denny WA (2000) Tyrosine kinase inhibitors. 17. Irreversible inhibitors of the epidermal growth factor receptor: 4-(phenylamino)quinazoline- and 4-(phenylamino)pyrido[3,2-d]pyrimidine-6-acrylamides bearing additional solubilizing functions. J Med Chem 43:1380–1397

    Google Scholar 

  19. Traxler P, Allegrini PR, Brandt R, Brueggen J, Cozens R, Fabbro D, Grosios K, Lane HA, McSheehy P, Mestan J, Meyer T, Tang C, Wartmann M, Wood J, Caravatti G (2004) AEE788: a dual family epidermal growth factor receptor/ErbB2 and vascular endothelial growth factor receptor tyrosine kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res 64:4931–4941

    Article  CAS  Google Scholar 

  20. Bruns CJ, Solorzano CC, Harbison MT, Ozawa S, Tsan R, Fan D, Abbruzzese J, Traxler P, Buchdunger E, Radinsky R, Fidler IJ (2000) Blockade of the epidermal growth factor receptor signaling by a novel tyrosine kinase inhibitor leads to apoptosis of endothelial cells and therapy of human pancreatic carcinoma. Cancer Res 60:2926–2935

    CAS  Google Scholar 

  21. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139

    Article  CAS  Google Scholar 

  22. Pao W, Miller VA (2005) Epidermal growth factor receptor mutations, small-molecule kinase inhibitors, and non-small-cell lung cancer: current knowledge and future directions. J Clin Oncol 23:2556–2568

    Article  CAS  Google Scholar 

  23. Cragg GM, Newman DJ (2005) Plants as a source of anti-cancer agents. J Ethnopharmacol 100:72–79

    Article  CAS  Google Scholar 

  24. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    Article  CAS  Google Scholar 

  25. Butler MS (2008) Natural products to drugs: natural product-derived compounds in clinical trials. Nat Prod Rep 25:475–516

    Article  CAS  Google Scholar 

  26. Stamos J, Sliwkowski MX, Eigenbrot C (2002) Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J Biol Chem 277:46265–46272

    Article  CAS  Google Scholar 

  27. Wood ER, Truesdale AT, McDonald OB, Yuan D, Hassell A, Dickerson SH, Ellis B, Pennisi C, Horne E, Lackey K, Alligood KJ, Rusnak DW, Gilmer TM, Shewchuk L (2004) A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res 64:6652–6659

    Article  CAS  Google Scholar 

  28. Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J (2006) An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125:1137–1149

    Article  CAS  Google Scholar 

  29. Blair JA, Rauh D, Kung C, Yun CH, Fan QW, Rode H, Zhang C, Eck MJ, Weiss WA, Shokat KM (2007) Structure-guided development of affinity probes for tyrosine kinases using chemical genetics. Nat Chem Biol 3:229–238

    Article  CAS  Google Scholar 

  30. Yun CH, Boggon TJ, Li Y, Woo MS, Greulich H, Meyerson M, Eck MJ (2007) Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell 11:217–227

    Article  CAS  Google Scholar 

  31. Zhang X, Pickin KA, Bose R, Jura N, Cole PA, Kuriyan J (2007) Inhibition of the EGF receptor by binding of MIG6 to an activating kinase domain interface. Nature 450:741–744

    Article  CAS  Google Scholar 

  32. Yun CH, Mengwasser KE, Toms AV, Woo MS, Greulich H, Wong KK, Meyerson M, Eck MJ (2008) The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci USA 105:2070–2075

    Google Scholar 

  33. Red Brewer M, Choi SH, Alvarado D, Moravcevic K, Pozzi A, Lemmon MA, Carpenter G (2009) The juxtamembrane region of the EGF receptor functions as an activation domain. Mol Cell 34:641–651

    Article  Google Scholar 

  34. Jura N, Endres NF, Engel K, Deindl S, Das R, Lamers MH, Wemmer DE, Zhang X, Kuriyan J (2009) Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. Cell 137:1293–1307

    Article  Google Scholar 

  35. Zhou W, Ercan D, Chen L, Yun CH, Li D, Capelletti M, Cortot AB, Chirieac L, Iacob RE, Padera R, Engen JR, Wong KK, Eck MJ, Gray NS, Janne PA (2009) Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature 462:1070–1074

    Article  CAS  Google Scholar 

  36. Sangma C, Chuakheaw D, Jongkon N, Saenbandit K, Nunrium P, Uthayopas P, Hannongbua S (2005) Virtual screening for anti-HIV-1 RT and anti-HIV-1 PR inhibitors from the Thai medicinal plants database: a combined docking with neural networks approach. Comb Chem High Throughput Screen 8:417–429

    Article  CAS  Google Scholar 

  37. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  38. Huey R, Goodsell DS, Morris GM, Olson AJ (2004) Grid-based hydrogen bond potentials with improved directionality. Lett Drug Des Discovery 1:178–183

    Google Scholar 

  39. Huey R, Morris GM, Olson AJ, Goodsell DS (2007) A semiempirical free energy force field with charge-based desolvation. J Comput Chem 28:1145–1152

    Article  CAS  Google Scholar 

  40. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Improved protein-ligand docking using GOLD. Proteins 52:609–623

    Article  CAS  Google Scholar 

  41. Cambridge Crystallographic Data Centre (2008) GOLD 4.0. Cambridge Crystallographic Data Centre, Cambridge

  42. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision Glide: docking and scoring incorporating a model of hydrophobic enclosure for protein–ligand complexes. J Med Chem 49:6177–6196

    Google Scholar 

  43. Gasteiger J, Rudolph C, Sadowski J (1990) Automatic generation of 3D-atomic coordinates for organic molecules. Tetrahedron Comput Methodol 3:537–547

    Google Scholar 

  44. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL (1993) The general atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Google Scholar 

  45. OpenEye Scientific Software Inc. (2011) FILTER program. OpenEye Scientific Software Inc., Santa Fe. http://www.eyesopen.com

  46. Clark AM, Labute P (2007) 2D depiction of protein–ligand complexes. J Chem Inf Model 47:1933–1944

    Google Scholar 

  47. Tripos Associates (2006) Sybyl 7.3. Tripos Associates, St. Louis

  48. OpenEye Scientific Software Inc. (2011) FRED program. OpenEye Scientific Software Inc., Santa Fe. http://www.eyesopen.com

  49. La Motta C, Sartini S, Tuccinardi T, Nerini E, Da Settimo F, Martinelli A (2009) Computational studies of epidermal growth factor receptor: docking reliability, three-dimensional quantitative structure–activity relationship analysis, and virtual screening studies. J Med Chem 52:964–975

    Google Scholar 

  50. Schrödinger, LLC (2008) Maestro, v.8.5. Schrödinger, LLC, New York

  51. Schrödinger, LLC (2008) Ligprep, v.2.2. Schrödinger, LLC, New York

  52. Schrödinger, LLC (2008) Glide, v.5.0. Schrödinger LLC, New York

  53. Chen YF, Hsu KC, Lin SR, Wang WC, Huang YC, Yang JM (2010) SiMMap: a web server for inferring site-moiety map to recognize interaction preferences between protein pockets and compound moieties. Nucleic Acids Res 38:W424–430

    Google Scholar 

  54. Hodgson J (2001) ADMET—turning chemicals into drugs. Nat Biotechnol 19:722–726

    Google Scholar 

  55. Clark DE, Grootenhuis PD (2002) Progress in computational methods for the prediction of ADMET properties. Curr Opin Drug Discov Devel 5:382–390

    CAS  Google Scholar 

  56. DeLano WL (2002) The PyMOL Molecular Graphics System. DeLano Scientific, Palo Alto. http://www.pymol.org

  57. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012

    Article  CAS  Google Scholar 

  58. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general Amber force field. J Comput Chem 25:1157–1174

    Google Scholar 

  59. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  60. Ryckaert JP, Hinton DP, Byrd RA (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Google Scholar 

  61. Choowongkomon K, Sawatdichaikul O, Songtawee N, Limtrakul J (2010) Receptor-based virtual screening of EGFR kinase inhibitors from the NCI Diversity Database. Molecules 15:4041–4054

    Google Scholar 

  62. Zhou Z, Felts AK, Friesner RA, Levy RM (2007) Comparative performance of several flexible docking programs and scoring functions: enrichment studies for a diverse set of pharmaceutically relevant targets. J Chem Inf Model 47:1599–608

    Article  CAS  Google Scholar 

  63. Loder JW, Mongolsuk S, Robertson A, Whalley WB (1957) Diospyrol, a constituent of Diospyros mollis. J Chem Soc 2233–2237

  64. Mallavadhani UV, Panda AK, Rao YR (1998) Pharmacology and chemotaxonomy of Diospyros. Phytochemistry 49:901–951

    Google Scholar 

  65. Ho CK, Huang YL, Chen CC (2002) Garcinone E, a xanthone derivative, has potent cytotoxic effect against hepatocellular carcinoma cell lines. Planta Med 68:975–979

    Article  CAS  Google Scholar 

  66. Matsumoto K, Akao Y, Kobayashi E, Ohguchi K, Ito T, Tanaka T, Iinuma M, Nozawa Y (2003) Induction of apoptosis by xanthones from mangosteen in human leukemia cell lines. J Nat Prod 66:1124–1127

    Google Scholar 

  67. Suphavanich K, Maitarad P, Hannongbua S, Sudta P, Suksamrarn S, Tantirungrotechai Y, Limtrakul J (2009) CoMFA and CoMSIA studies on a new series of xanthone derivatives against the oral human epidermoid carcinoma (KB) cancer cell line. Monatsh Chem 140:273–280

    Google Scholar 

  68. Shimizu K, Kondo R, Sakai K, Buabarn S, Dilokkunanant U (2000) 5α-Reductase inhibitory component from leaves of Artocarpus altilis. J Wood Sci 46:385–389

    Google Scholar 

  69. Ruangrungsi N, Iinuma M, Tanaka T, Ohyama M, Yokoyama J, Mizuno M (1992) Three flavanones with a lavandulyl group in the roots of Sophora exigua. Phytochemistry 31:999–1001

    Google Scholar 

  70. Chanphen R, Thebtaranonth Y, Wanauppathamkul S, Yuthavong Y (1998) Antimalarial principles from Artemisia indica. J Ethnopharmacol 61:1146–1147

    Google Scholar 

  71. Tsuchiya H, Sato M, Miyazaki T, Fujiwara S, Tanigaki S, Ohyama M, Tanaka T, Iinuma M (1996) Comparative study on the antibacterial activity of phytochemical flavanones against methicillin-resistant Staphylococcus aureus. J Ethnopharmacol 50:27–34

    Google Scholar 

  72. Venkateswarlu S, Ramachandra MS, Subbaraju GV (2005) Synthesis and biological evaluation of polyhydroxycurcuminoids. Bioorg Med Chem 13:6374–6380

    Article  CAS  Google Scholar 

  73. Nakahara K, Roy MK, Ono H, Maeda I, Ohnishi-Kameyama M, Yoshida M, Trakoontivakorn G (2003) Prenylated flavanones isolated from flowers of Azadirachta indica (the neem tree) as antimutagenic constituents against heterocyclic amines. J Agric Food Chem 51:6456–6460

    Google Scholar 

  74. Liu B, Bernard B, Wu JH (2006) Impact of EGFR point mutations on the sensitivity to gefitinib: insights from comparative structural analyses and molecular dynamics simulations. Proteins 65:331–346

    Article  CAS  Google Scholar 

  75. Accelrys Inc. (2009) Discovery Studio 2.5. Accelrys Inc., San Diego. http://www.accelrys.com

  76. Carey KD, Garton AJ, Romero MS, Kahler J, Thomson S, Ross S, Park F, Haley JD, Gibson N, Sliwkowski MX (2006) Kinetic analysis of epidermal growth factor receptor somatic mutant proteins shows increased sensitivity to the epidermal growth factor receptor tyrosine kinase inhibitor, erlotinib. Cancer Res 66:8163–8171

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Thailand Research Fund [TRF project code MRG4980061, TRF Senior Research Scholars (RTA 5380010)], BRC 13/2551, Faculty of Science, Graduate School Research Fund, Kasetsart University, and Kasetsart University Research and Development Institute. We would like to thank the Interdisciplinary Graduate Program in Genetic Engineering, Kasetsart University, for providing SYBYL 7.3, as well as the Institute for Theoretical Chemistry, University of Vienna, Austria, for generously providing the MOE and Schrödinger programs as well as computing time and research facilities. The usage of the GOLD program was allowed by the National Center of Excellence in Petroleum, Petrochemical Technology and Advanced Materials. Thanks are due to Dr. Anton Bayer and Dr. Witcha Treesuwan for their suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiattawee Choowongkomon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1491 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawatdichaikul, O., Hannongbua, S., Sangma, C. et al. In silico screening of epidermal growth factor receptor (EGFR) in the tyrosine kinase domain through a medicinal plant compound database. J Mol Model 18, 1241–1254 (2012). https://doi.org/10.1007/s00894-011-1135-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1135-z

Keywords

Navigation