Skip to main content
Log in

Theoretical study of crown ethers with incorporated azobenzene moiety

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A series of crown ethers containing the azobenzene moiety incorporated into crowns of various sizes [Cr(O6), Cr(O7) and Cr(O8)] and their corresponding alkali metal cation (Li+, Na+, K+, Rb+) complexes have been studied theoretically. The density functional theory (DFT) method was employed to elucidate the stereochemical structural natures and thermodynamic properties of all of the target molecules at the B3LYP/6-31 G(d) and LANL2DZ level for the cation Rb+. The fully optimized geometries had real frequencies, thus indicating their minimum-energy status. In addition, the bond lengths between the metal cation and oxygen atoms, atomic torsion angles and thermodynamic energies for complexes were studied. Natural bond orbital (NBO) analysis was used to explore the origin of the internal forces and the intermolecular interactions for the metal complexes. The calculated results show that the most significant interaction is that between the lone pair electrons of electron-donating oxygens in the cis-forms of azobenzene crown ethers (cis-ACEs) and the LP* (1-center valence antibond lone pair) orbitals of the alkali-metal cations (Li+, Na+, K+ and Rb+). The electronic spectra for the cis-ACEs [cis-Cr(O6), cis-Cr(O7) and cis-Cr(O8)] are obtained by the time-dependent density functional theory (TDDFT) at the B3LYP/6-31 G(d) level. The spectra of the cis-isomers show broad π → π* (S0 → S2) absorption bands at 310–340 nm but weaker n → π* (S0 → S1) bands at 480–490 nm. The calculated results are in good agreement with the experimental results.

A series of crown ethers containing the azobenzene moiety incorporated into crowns of various sizes [Cr(O6), Cr(O7) and Cr(O8)] and their corresponding alkali metal cation (Li+, Na+, K+, Rb+) complexes were studied theoretically

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kyba EP, Helgeson RC, Madan K, Gokel GW, Tarnowski TL, Moore SS, Cram DJ (1977) J Am Chem Soc 99:2564–2571

    Google Scholar 

  2. Kovbasyuk L, Krämer R (2004) Chem Rev 104:3161–3187

    Article  CAS  Google Scholar 

  3. Pedersen CJ (1967) J Am Chem Soc 89:7017–7036

    Article  CAS  Google Scholar 

  4. Gokel GW (1991) Crown ethers and cryptands. Royal Society of Chemistry, Cambridge

  5. More MB, Glendening ED, Ray D, Feller D, Armentrout PB (1996) J Phys Chem 100:1605–1614

    Article  CAS  Google Scholar 

  6. Feringa BL (2001) Molecular switches. Wiley-VCH, Weinheim, p 454

  7. Balzani V, Scandola F (1991) Supramolecular photochemistry. Ellis Horwood, New York, pp 199–215

  8. Liu ZF, Hashimoto K, Fujishima A (1990) Nature 347:658–660

    Article  CAS  Google Scholar 

  9. Ikeda T, Tsutsumi O (1995) Science 268:1873–1875

    Article  CAS  Google Scholar 

  10. Sekkat Z, Dumont M (1992) Appl Phys B 54:486–489

    Article  Google Scholar 

  11. Hugel T, Holland NB, Cattani A, Moroder L, Seitz M, Gaub HE (2002) Science 296:1103–1106

    Article  Google Scholar 

  12. Muraoka T, Kinbara K, Kobayashi Y, Aida T (2003) J Am Chem Soc 125:5612–5613

    Article  CAS  Google Scholar 

  13. Zhang C, Du MH, Cheng HP, Zhang XG, Roitberg AE, Krause JL (2004) Phys Rev Lett 92:158301(1–4)

  14. Halabieh HE, Mermut O, Barrett CJ (2004) Pure Appl Chem 76:1445–1465

    Article  Google Scholar 

  15. Shinkai S, Nakaji T, Nishida Y, Ogawa T, Manabe O (1980) J Am Chem Soc 102:5860–5865

    Article  CAS  Google Scholar 

  16. Tahara R, Morozumi T, Nakamura H, Shimomura M (1997) J Phys Chem B 101:7736–7743

    Article  CAS  Google Scholar 

  17. Shinkai S, Minami T, Kusano Y, Manabe O (1983) J Am Chem Soc 105:1851–1856

    Article  CAS  Google Scholar 

  18. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  19. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  20. Korth HG, De Heer MI, Mulder P (2002) J Phys Chem A 106:8779–8789

    Article  CAS  Google Scholar 

  21. Johnson BG, Gill PMW, Pople JA (1993) J Chem Phys 98:5612–5626

    Article  CAS  Google Scholar 

  22. Chowdhury PK (2003) J Phys Chem A 107:5692–5696

    Article  CAS  Google Scholar 

  23. Chis V (2004) Chem Phys 300:1–11

    Article  CAS  Google Scholar 

  24. Asensio A, Kobko N, Dannenberg JJ (2003) J Phys Chem A 107:6441–6443

    Article  CAS  Google Scholar 

  25. Müller A, Losada M, Leutwyler S (2004) J Phys Chem A 108:157–165

    Article  Google Scholar 

  26. Goncalves NS, Cristiano R, Pizzolatti MG, da Silva Miranda F (2005) J Mol Struct 733:53–61

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JAJr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith TM, Al-Laham A, Peng CY, Nanayakkara A, Challacombe MP, Gill MW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 2003W, revision B.05. Gaussian Inc., Pittsburgh

  28. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  29. Reed AE, Weinhold F (1983) J Chem Phys 78:4066–4073

    Article  CAS  Google Scholar 

  30. Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211–7218

    Article  CAS  Google Scholar 

  31. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  32. Schulze FW, Petrick HJ, Cammenga HK, Klinge H (1977) Z Phys Chem Neue Fol 107:4743

    Google Scholar 

  33. Cattaneo P, Persico M (1999) Phys Chem Chem Phys 1:4739–4743

    Article  CAS  Google Scholar 

  34. Ishikawa T, Noro T, Shoda TJ (2001) Chem Phys 115:7503–7512

    CAS  Google Scholar 

  35. Tiago ML, Ismail-Beigi S, Louie SG (2005) J Chem Phys 122:094311(1–7)

  36. Cembran A, Bernardi F, Garavelli L, Gagliardi L, Orlandi G (2004) J Am Chem Soc 126:3234–3243

    Article  CAS  Google Scholar 

  37. Biswas N, Umpathy S (1997) J Phys Chem 107:7849–7858

    Article  CAS  Google Scholar 

  38. Mostad A, Romming C (1971) Acta Chem Scand 25:3561–3568

    Article  CAS  Google Scholar 

  39. Fliegl H, Kohn A, Hattig C, Ahlrichs R (2003) J Am Chem Soc 125:9821–9827

    Article  CAS  Google Scholar 

  40. Hopkins HP Jr, Norman AB (1980) J Phys Chem 84:309–314

    Article  CAS  Google Scholar 

  41. Smetana AJ, Popov AI (1980) J Solution Chem 9:183–196

    Article  CAS  Google Scholar 

  42. Lamb JD, Izatt RM, Swain CS, Christensen JJ (1980) J Am Chem Soc 102:475–479

    Article  CAS  Google Scholar 

  43. Ouchi M, Inoue Y, Kanzaki T, Hakushi T (1984) J Org Chem 49:1408–1412

    Article  CAS  Google Scholar 

  44. Pedersen C (1970) J Am Chem Soc 92:391–394

    Article  CAS  Google Scholar 

  45. Liu Y, Lu TB, Tan MY, Hakushi T, Inoue Y (1993) J Phys Chem 97:4548–4551

    Google Scholar 

  46. Ouchi M, Inoue Y (1985) Bull Chem Soc Jpn 58:525–530

    Article  Google Scholar 

  47. Ouchi M, Inoue Y, Kanzaki T (1984) Bull Chem Soc Jpn 57:887–888

    Article  CAS  Google Scholar 

  48. Hill SE, Feller D (2000) Int J Mass Spectrom 201:41–58

    Article  CAS  Google Scholar 

  49. Adamovic I, Gordon MS (2005) J Phys Chem A 109:1629–1636

    Article  CAS  Google Scholar 

  50. Mo Y, Wu W, Song L, Lin M, Zhang Q, Gao J (2004) Angew Chem Int Ed 43:1986–1990

    Google Scholar 

  51. Mo Y, Jiao H, Schleyer PvR (2004) J Org Chem 69:3493–3499

    Article  CAS  Google Scholar 

  52. Mo Y, Schleyer PvR, Wu W, Lin M, Zhang Q, Gao J (2003) J Phys Chem A 107:10011–10018

    Article  CAS  Google Scholar 

  53. Cramer CJ (2002) Essentials of computational chemistry: theories and models, 2nd edn. Wiley, New York

  54. Kim KS, Tarakeshwar P, Lee JY (2000) Chem Rev 100:4145–4186

    Article  CAS  Google Scholar 

  55. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  56. Crecca CR, Roitberg AE (2006) J Phys Chem A 110:8188–8203

    Article  CAS  Google Scholar 

  57. Nägele T, Hoche R, Zinth W, Wachtveitl J (1997) Chem Phys Lett 272:489–495

    Article  Google Scholar 

Download references

Acknowledgments

The author wish to acknowledge the financial support from the Scientific Research Fund of Hunan Provincial Education Department (no. 09A091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueye Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miao, Y., Wang, X. & Ouyang, D. Theoretical study of crown ethers with incorporated azobenzene moiety. J Mol Model 18, 963–972 (2012). https://doi.org/10.1007/s00894-011-1132-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1132-2

Keywords

Navigation