Journal of Molecular Modeling

, Volume 18, Issue 3, pp 913–920 | Cite as

Topological properties of some PhSeX compounds

  • Nora Beatriz Okulik
  • Alicia H. Jubert
  • Eduardo A. Castro
Original Paper


A theoretical study on the series of compounds “PhSeX”, where Ph = phenyl, Se = selenium and X = Cl, Br, I, CN or SCN, is reported and compared with previously reported experimental data. The molecular geometry for these PhSeX compounds was studied at the DFT/B3LYP level of calculation by means of the 6-311G(d,p) basis set. The equilibrium structures of the molecules were dependent on the method employed to compare the known solid structures. A topological study of the calculated PhSeX species, based on the AIM theory, was carried out to gain a deeper insight into the bonding nature and to find an explanation for the structural diversity exhibited by these PhSeX compounds. The results reported herein illustrate the subtle differences in the solid-state structures of PhSeX compounds.


Topological study DFT Pseudohalogen Selenium PhSeX 


  1. 1.
    IUPAC (1995) Compendium of Chemical Terminology 67:1361Google Scholar
  2. 2.
    Birkenbach L, Kellermann K (1925) Über Pseudohalogene (I). Ber Dtsch Chem Ges 58:786–794CrossRefGoogle Scholar
  3. 3.
    Holleman F, Wiberg N, Wiberg E (1995) Lehrbuch der Anorganischen Chemie, 101st edn. de Gruyter, BerlinGoogle Scholar
  4. 4.
    Tiecco M (2000) Electrophilic Selenium, Selenocylizations. Top Curr Chem 208:7–54CrossRefGoogle Scholar
  5. 5.
    Wirth T (2000) Organoselenium chemistry: modern developments in organic synthesis. Springer, BerlinGoogle Scholar
  6. 6.
    Kubiniok S, du Mont WW, Pohl S, Saak W (1988) The reagent diphenyldiselane/Iodine: no phenylselenenyl iodide but a charge transfer complex with cyclic moieties. Angew Chem Int Edn 27:431–433CrossRefGoogle Scholar
  7. 7.
    Barnes NA, Godfrey SM, Halton RTA, Mushtaq I, Parsons S, Pritchard RG, Sadler M (2007) A comparison of the solid-state structures of a series of phenylseleno-halogen and pseudohalogen compounds, PhSeX (X = Cl, CN, SCN). Polyhedron 26:1053–1060CrossRefGoogle Scholar
  8. 8.
    Barnes NA, Godfrey SM, Halton RTA, Mushtaq I, Pritchard RG, Sarwar S (2006) Reactions of Ph4Se4Br4 with tertiary phosphines. Structural isomerism within a series of R3PSe(Ph)Br compounds. Dalton Trans 12:1517–1523CrossRefGoogle Scholar
  9. 9.
    Klapötke TM, Krumm B, Mayer P (2004) Chemistry of C6F5SeLi and C6F5SeCl: precursors to new pentafluorophenylselenium(II) compounds. Z Naturforsch 59b:547–553Google Scholar
  10. 10.
    Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R (1987) Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J Chem Soc Perkin Trans 2:S1–S19Google Scholar
  11. 11.
    Akers C, Peterson SW, Willett RD (1968) A refinement of the crystal structure of KSCN. Acta Crystallogr B 24:1125–1126CrossRefGoogle Scholar
  12. 12.
    Okulik N, Jubert AH, Castro EA (2002) Theoretical study of new pseudohalogen CS2N3 and some related compounds. J Mol Struct THEOCHEM 589–590:79–87CrossRefGoogle Scholar
  13. 13.
    Okulik NB, Jubert A, Castro E (2006) Bonding in some covalent derivatives of the 1,2,3,4-thiatriazole-5-thiolate anion. A topological study. J Mol Struct THEOCHEM 770:13–22CrossRefGoogle Scholar
  14. 14.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:864–B871CrossRefGoogle Scholar
  15. 15.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138CrossRefGoogle Scholar
  16. 16.
    Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, OxfordGoogle Scholar
  17. 17.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  18. 18.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  19. 19.
    Cambridge Crystallographic Data Center, 12, Union Road, Cambridge CB2 1EZ, UKGoogle Scholar
  20. 20.
    Clark T, Chandrasekhar J, Spitznagel GW, PvR S (1983) Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21 + G basis set for first-row elements, Li–F. J Comput Chem 4:294–301CrossRefGoogle Scholar
  21. 21.
    Curtiss LA, McGrath MP, Blandeau JP, Davis NE, Binning RC Jr, Radom L (1995) Extension of Gaussian–2 theory to molecules containing third–row atoms Ga–Kr. J Chem Phys 103:6104–6113CrossRefGoogle Scholar
  22. 22.
    Frisch MJ et al (2003) Gaussian 03, Revision C.02. Gaussian Inc, Wallingford, CTGoogle Scholar
  23. 23.
    Biegler-König FW, Bader RFW, Tang TH (1982) Calculation of the average properties of atoms in molecules II. J Comput Chem 3:317–328CrossRefGoogle Scholar
  24. 24.
    Gans J, Shalloway D (2001) Qmol: A program for molecular visualization on Windows based PCs. J Mol Graph Model 19:557–559CrossRefGoogle Scholar
  25. 25.
    Bader RFW (1990) Atoms in molecules. A quantum theory. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Nora Beatriz Okulik
    • 1
  • Alicia H. Jubert
    • 2
  • Eduardo A. Castro
    • 3
  1. 1.Universidad Nacional del Chaco AustralPcia. R. Sáenz PeñaArgentina
  2. 2.CEQUINOR, Dpto. de Química, Facultad de Ciencias Exactas 47 y 115 y Facultad de Ingeniería 1 y 47Universidad Nacional de La PlataBuenos AiresArgentina
  3. 3.INIFTA, Dpto. de Química, Facultad de Ciencias ExactasUniversidad Nacional de La PlataBuenos AiresArgentina

Personalised recommendations