Skip to main content

Advertisement

Log in

Determination of best-fit potential parameters for a reactive force field using a genetic algorithm

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The ReaxFF interatomic potential, used for organic materials, involves more than 600 adjustable parameters, the best-fit values of which must be determined for different materials. A new method of determining the set of best-fit parameters for specific molecules containing carbon, hydrogen, nitrogen and oxygen is presented, based on a parameter reduction technique followed by genetic algorithm (GA) minimization. This work has two novel features. The first is the use of a parameter reduction technique to determine which subset of parameters plays a significant role for the species of interest; this is necessary to reduce the optimization space to manageable levels. The second is the application of the GA technique to a complex potential (ReaxFF) with a very large number of adjustable parameters, which implies a large parameter space for optimization. In this work, GA has been used to optimize the parameter set to determine best-fit parameters that can reproduce molecular properties to within a given accuracy. As a test problem, the use of the algorithm has been demonstrated for nitromethane and its decomposition products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rapaport DC (1995) The art of molecular dynamics simulation. Cambridge University Press, Cambridge

  2. Tersoff J (1986) Phys Rev Lett 56:632

    Article  CAS  Google Scholar 

  3. Brenner DW (1990) Phys Rev B 42:9458

    Article  CAS  Google Scholar 

  4. Stuart SJ, Tutein B, Harrison JA (2000) J Chem Phys 112:6472

    Article  CAS  Google Scholar 

  5. van Duin A, Dasgupta S, Lorant F, Goddard WA (2001) J Phys Chem A 105:9396

    Article  Google Scholar 

  6. Smeyers YG, Bellido MN (2004) Int J Quant Chem 23:507

    Article  Google Scholar 

  7. Makarov DE, Metiu H (1998) J Chem Phys 108:590

    Article  CAS  Google Scholar 

  8. Melandri S, Favero G, Caminati W, Favero B, Esposti AD (1997) J Chem Soc Faraday Trans 93:2131

    Google Scholar 

  9. Graham AP, Hofmann F, Toennies JP, Chen LY, Ying SC (1997) Phys Rev Lett 78:3900

    Google Scholar 

  10. Carlson AF, Madix RJ (2000) Surf Sci 470:62

    Article  Google Scholar 

  11. Kryachko ES, Lwdin O, Brndas E (2004) Fundamental world of quantum chemistry: a tribute to the memory of Per-Olov Lowdin, vol II. Kluwer, Dordrecht

  12. Hutson JM, Ernesti A, Law MM, Roche CF, Wheatley RJ (1996) J Chem Phys 105:9130

    Article  CAS  Google Scholar 

  13. Atkins KM, Hutson JM (1996) J Chem Phys 105:440

    Article  CAS  Google Scholar 

  14. Prudente FV, Acioli H, Neto JJS (1998) J Phys Chem 109:8801

    Article  CAS  Google Scholar 

  15. Saad D, Rattray M (1997) Phys Rev Lett 79:2578

    Article  CAS  Google Scholar 

  16. Thompson DL, Wagner AF, Minkoff M (2006) J Phys Conf Ser 46:234

    Google Scholar 

  17. Xu YG, Liu GR (2003) J Micromech Microeng 13:254

    Article  Google Scholar 

  18. Tersoff J (1988) Phys Rev Lett 61:2879

    Article  CAS  Google Scholar 

  19. Haskins PJ, Cook M, Fellows J, Wood A (1998) In: Proc 11th Int Symp on Detonation, Aspen, CO, USA, 30 Aug–4 Sept 1998, p 897

  20. Johnston HS, Parr C (1963) J Am Chem Soc 85:2544

    Google Scholar 

  21. Johnston HS (1963) J Am Chem Soc 85:2544

    Google Scholar 

  22. Root DM, Landis CM (1993) J Am Chem Soc 115:4201

    Google Scholar 

  23. Cleveland T, Landis CM (1996) J Am Chem Soc 118:6020

    Google Scholar 

  24. Brenner DW, Shendrova OA, Harrison A, Stuart SJ, Boris N, Sinnott SB (2002) J Phys Condens Matter 14:783

    Google Scholar 

  25. Boris N, Lee KH, Sinnott SB (2004) J Physi Condens Matter 16:7261

    Google Scholar 

  26. Strachan A, van Duin A, Chakraborty D, Dasgupta S, Goddard WA III (2003) Phys Rev Lett 91:098301

    Google Scholar 

  27. Strachen A, Kober EM, van Duin A, Oxaggard J, Goddard WA III (2005) J Chem Phys 122:054502

    Article  Google Scholar 

  28. University of Waterloo Webpage (2011) http://www.science.uwaterloo.ca/~cchieh/cact/c120/bondel.html

  29. DOlgov EY, Batev VA, Godunov IA (2004) Int J Quant Chem 96:193

    Article  CAS  Google Scholar 

  30. SoftWare (2011) SoftWare: 64-bit operating system (webpage). http://www.cachesoftware.com/mopac/index.shtml

  31. Croxton FE, Cowden DJ, Klein S (1939) Applied general statistic. Prentice Hall Inc, New York

  32. Holland JH (1975) Adaptation in natural and artificial systems. The University of Michigan Press, Ann Arbor

    Google Scholar 

  33. Deaven DM, Ho KM (1995) Phys Rev Lett 75:288

    Article  CAS  Google Scholar 

Download references

Acknowledgment

It is a pleasure to acknowledge the help given by Dr. A.C.T. van Duin in providing the Reaxff MD code and also helping with the use of that code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poonam Pahari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pahari, P., Chaturvedi, S. Determination of best-fit potential parameters for a reactive force field using a genetic algorithm. J Mol Model 18, 1049–1061 (2012). https://doi.org/10.1007/s00894-011-1124-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1124-2

Keywords

PACS numbers

Navigation