Skip to main content
Log in

Controlling the aggregation and rate of release in order to improve insulin formulation: molecular dynamics study of full-length insulin amyloid oligomer models

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Insulin is a hormone that regulates the physiological glucose level in human blood. Insulin injections are used to treat diabetic patients. The amyloid aggregation of insulin may cause problems during the production, storage, and delivery of insulin formulations. Several modifications to the C-terminus of the B chain have been suggested in order to improve the insulin formulation. The central fragments of the A and B chains (LYQLENY and LVEALYL) have recently been identified as β-sheet-forming regions, and their microcrystalline structures have been used to build a high-resolution amyloid fibril model of insulin. Here we report on a molecular dynamics (MD) study of single-layer oligomers of the full-length insulin which aimed to identify the structural elements that are important for amyloid stability, and to suggest single glycine mutants in the β-sheet region that may improve the formulation. Structural stability, aggregation behavior and the thermodynamics of association were studied for the wild-type and mutant aggregates. A comparison of the oligomers of different sizes revealed that adding strands enhances the internal stability of the wild-type aggregates. We call this “dynamic cooperativity”. The secondary structure content and clustering analysis of the MD trajectories show that the largest aggregates retain the fibril conformation, while the monomers and dimers lose their conformations. The degree of structural similarity between the oligomers in the simulation and the fibril conformation is proposed as a possible explanation for the experimentally observed shortening of the nucleation lag phase of insulin with oligomer seeding. Decomposing the free energy into electrostatic, van der Waals and solvation components demonstrated that electrostatic interactions contribute unfavorably to the binding, while the van der Waals and especially solvation effects are favorable for it. A per-atom decomposition allowed us to identify the residues that contribute most to the binding free energy. Residues in the β-sheet regions of chains A and B were found to be the key residues as they provided the largest favorable contributions to single-layer association. The positive ∆∆G mut values of 37.3 to 1.4 kcal mol−1 of the mutants in the β-sheet region indicate that they have a lower tendency to aggregate than the wild type. The information obtained by identifying the parts of insulin molecules that are crucial to aggregate formation and stability can be used to design new analogs that can better control the blood glucose level. The results of our simulation may help in the rational design of new insulin analogs with a decreased propensity for self-association, thus avoiding injection amyloidosis. They may also be used to design new fast-acting and delayed-release insulin formulations.

Molecular dynamic study of the full length insulin amyloid oligomers identified structural elements important for their stability. Comparison of the aggregates of different size revealed that addition of strands enhances the internal stability of the oligomers. Per-atom decomposition of the binding free energy allowed us to identify the residues contributing most to the binding free energy. We found the residues in the β-sheet regions of chain A and chain B to be the key residues for the single layer association. The result from our simulation could help in the rational design of the new insulin analogues with the decreased propensity for self-association avoiding injection amyloidosis. It can also be used to design new fast acting and delayed release insulin formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–b
Fig. 2
Fig. 3
Fig. 4
Fig. 5a, b

Similar content being viewed by others

References

  1. Zierath JR, Krook A, Wallberg-Henriksson H (2000) Diabetologia 43:821–835

    Article  CAS  Google Scholar 

  2. Shepherd PR, Kahn BB (1999) N Engl J Med 341:248–257

    Article  CAS  Google Scholar 

  3. Nystrom FH, Quon MJ (1999) Cell Signal 11:563–574

    Article  CAS  Google Scholar 

  4. Ottensmeyer FP, Beniac DR, Luo RZT, Yip CC (2000) Biochemistry 39:12103–12112. doi:10.1021/bi0015921

    Article  CAS  Google Scholar 

  5. Wild S, Roglic G, Green A, Sicree R, King H (2004) Diabetes Care 27:1047–1053

    Article  Google Scholar 

  6. Rewers M (2008) Diabetes Care 31:830–832. doi:10.2337/dc08-0245

    Article  Google Scholar 

  7. Storkel S, Schneider HM, Muntefering H, Kashiwagi S (1983) Lab Invest 48:108–111

    CAS  Google Scholar 

  8. Dische FE, Wernstedt C, Westermark GT, Westermark P, Pepys MB, Rennie JA, Gilbey SG, Watkins PJ (1988) Diabetologia 31:158–161

    Article  CAS  Google Scholar 

  9. Greenwald J, Riek R (2010) Structure 18:1244–1260. doi:10.1016/j.str.2010.08.009

    Article  CAS  Google Scholar 

  10. Sipe JD, Benson MD, Buxbaum JN, Ikeda S, Merlini G, Saraiva MJM, Westermark P (2010) Amyloid J Protein Fold Disord 17:101–104. doi:10.3109/13506129.2010.526812

    Article  CAS  Google Scholar 

  11. Brange J, Andersen L, Laursen ED, Meyn G, Rasmussen E (1997) J Pharm Sci 86:517–525

    Article  CAS  Google Scholar 

  12. Wilhelm KR, Yanamandra K, Gruden MA, Zamotin V, Malisauskas M, Casaite V, Darinskas A, Forsgren L, Morozova-Roche LA (2007) Eur J Neurol 14:327–334. doi:10.1111/j.1468-1331.2006.01667.x

    CAS  Google Scholar 

  13. Ahmad A, Uversky VN, Hong D, Fink AL (2005) J Biol Chem 280:42669–42675. doi:10.1074/jbc.M504298200

    Article  CAS  Google Scholar 

  14. Ivanova MI, Sievers SA, Sawaya MR, Wall JS, Eisenberg D (2009) Proc Natl Acad Sci USA 106:18990–18995. doi:10.1073/pnas.0910080106

    Article  CAS  Google Scholar 

  15. Groenning M, Frokjaer S, Vestergaard B (2009) Curr Protein Pept Sci 10:509–528

    Article  CAS  Google Scholar 

  16. Sluzky V, Klibanov AM, Langer R (1992) Biotechnol Bioeng 40:895–903

    Article  CAS  Google Scholar 

  17. Grillo AO, Edwards KLT, Kashi RS, Shipley KM, Hu L, Besman MJ, Middaugh CR (2001) Biochemistry 40:586–595

    Article  CAS  Google Scholar 

  18. Onoue S, Ohshima K, Debari K, Koh K, Shioda S, Iwasa S, Kashimoto K, Yajima T (2004) Pharm Res 21:1274–1283

    Article  CAS  Google Scholar 

  19. Valla V (2010) Exp Diabetes Res 14:178372. doi:10.1155/2010/178372

  20. Maji SK, Perrin MH, Sawaya MR, Jessberger S, Vadodaria K, Rissman RA, Singru PS, Nilsson KPR, Simon R, Schubert D, Eisenberg D, Rivier J, Sawchenko P, Vale W, Riek R (2009) Science 325:328–332. doi:10.1126/science.1173155

    Article  CAS  Google Scholar 

  21. Maji SK, Schubert D, Rivier C, Lee S, Rivier JE, Riek R (2008) PLoS Biol 6:240–252. doi:10.1371/journal.pbio.0060017

    Article  CAS  Google Scholar 

  22. Zhao F, Ma ML, Xu B (2009) Chem Soc Rev 38:883–891

    Article  CAS  Google Scholar 

  23. Bell DSH (2007) Drugs 67:1813–1827

    Article  CAS  Google Scholar 

  24. Geddes AJ, Parker KD, Atkins EDT, Beighton E (1968) J Mol Biol 32:343–344

    Article  CAS  Google Scholar 

  25. Bouchard M, Zurdo J, Nettleton EJ, Dobson CM, Robinson CV (2000) Protein Sci 9:1960–1967

    Article  CAS  Google Scholar 

  26. Burke MJ, Rougvie MA (1972) Biochemistry 11:2435–2439

    Article  CAS  Google Scholar 

  27. Nettleton EJ, Tito P, Sunde M, Bouchard M, Dobson CM, Robinson CV (2000) Biophys J 79:1053–1065

    Article  CAS  Google Scholar 

  28. Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJW, McFarlane HT, Madsen AO, Riekel C, Eisenberg D (2007) Nature 447:453–457. doi:10.1038/nature05695

    Article  CAS  Google Scholar 

  29. Jimenez JL, Nettleton EJ, Bouchard M, Robinson CV, Dobson CM, Saibil HR (2002) Proc Natl Acad Sci USA 99:9196–9201. doi:10.1073/pnas.142459399

    Article  CAS  Google Scholar 

  30. Vestergaard B, Groenning M, Roessle M, Kastrup JS, van de Weert M, Flink JM, Frokjaer S, Gajhede M, Svergun DI (2007) PLoS Biol 5:1089–1097. doi:10.1371/journal.pbio.0050134

    Article  CAS  Google Scholar 

  31. Choi JH, May BCH, Wille H, Cohen FE (2009) Biophys J 97:3187–3195. doi:10.1016/j.bpj.2009.09.042

    Article  CAS  Google Scholar 

  32. Gibson TJ, Murphy RM (2006) Protein Sci 15:1133–1141. doi:10.1110/ps.051879606

    Article  CAS  Google Scholar 

  33. Nielsen L, Frokjaer S, Brange J, Uversky VN, Fink AL (2001) Biochemistry 40:8397–8409

    Article  CAS  Google Scholar 

  34. Brange J, Dodson GG, Edwards DJ, Holden PH, Whittingham JL (1997) Proteins 27:507–516

    Article  CAS  Google Scholar 

  35. Devlin GL, Knowles TPJ, Squires A, McCammon MG, Gras SL, Nilsson MR, Robinson CV, Dobson CM, MacPhee CE (2006) J Mol Biol 360:497–509. doi:10.1016/j.jmb.2006.05.007

    Article  CAS  Google Scholar 

  36. Hong DP, Fink AL (2005) Biochemistry 44:16701–16709. doi:10.1021/bi051658y

    Article  CAS  Google Scholar 

  37. Ivanova MI, Thompson MJ, Eisenberg D (2006) Proc Natl Acad Sci USA 103:4079–4082. doi:10.1073/pnas.0511298103

    Article  CAS  Google Scholar 

  38. Tito P, Nettleton EJ, Robinson CV (2000) J Mol Biol 303:267–278

    Article  CAS  Google Scholar 

  39. Zheng J, Jang H, Ma B, Tsai CJ, Nussinov R (2007) Biophys J 93:3046–3057. doi:10.1529/biophysj.107.110700

    Article  CAS  Google Scholar 

  40. Horn AHC, Sticht H (2010) J Phys Chem B 114:2219–2226. doi:10.1021/jp100023q

    Article  CAS  Google Scholar 

  41. Tsai HH, Reches M, Tsai CJ, Gunasekaran K, Gazit E, Nussinov R (2005) Proc Natl Acad Sci USA 102:8174–8179

    Article  CAS  Google Scholar 

  42. Mark AE, Berendsen HJC, Vangunsteren WF (1991) Biochemistry 30:10866–10872

    Article  CAS  Google Scholar 

  43. Zoete V, Meuwly M, Karplus M (2004) Proteins Struct Funct Bioinf 55:568–581. doi:10.1002/prot.20071

    Article  CAS  Google Scholar 

  44. Zoete V, Meuwly M (2006) J Comput Chem 27:1843–1857. doi:10.1002/jcc.20512

    Article  CAS  Google Scholar 

  45. Zoete V, Meuwly M, Karplus M (2005) Proteins Struct Funct Bioinf 61:79–93. doi:10.1002/prot.20528

    Article  CAS  Google Scholar 

  46. Falconi M, Cambria MT, Cambria A, Desideri A (2001) J Biomol Struct Dyn 18:761–772

    CAS  Google Scholar 

  47. Lu BZ, Chen WZ, Wang CX, Xu XJ (2002) Proteins 48:497–504. doi:10.1002/prot.10172

    Article  CAS  Google Scholar 

  48. Sasahara K, Naiki H, Goto Y (2005) J Mol Biol 352:700–711. doi:10.1016/j.jmb.2005.07.033

    Article  CAS  Google Scholar 

  49. Meersman F, Dobson CM (2006) BBA Proteins Proteomics 1764:452–460. doi:10.1016/j.bbapap.2005.10.021

    Article  CAS  Google Scholar 

  50. Mayer JP, Zhang F, DiMarchi RD (2007) Biopolymers 88:687–713. doi:10.1002/bip.20734

    Article  CAS  Google Scholar 

  51. Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh MJ, Cui G, Roe DR, Mathews DH, Seetin MG, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2010) AMBER 11. University of California, San Francisco

    Google Scholar 

  52. Mauro M, Craparo EF, Podesta A, Bulone D, Carrotta R, Martorana V, Tiana G, San Biagio PL (2007) J Mol Biol 366:258–274. doi:10.1016/j.jmb.2006.11.008

    Google Scholar 

  53. Arora A, Ha C, Park CB (2004) Protein Sci 13:2429–2436. doi:10.1110/ps.04823504

    Article  CAS  Google Scholar 

  54. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  55. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  56. Jouaux EM, Timm BB, Arndt KM, Exner TE (2009) J Pept Sci 15:5–15. doi:10.1002/psc.1078

    Article  CAS  Google Scholar 

  57. Wiltzius JJW, Sievers SA, Sawaya MR, Cascio D, Popov D, Riekel C, Eisenberg D (2008) Protein Sci 17:1467–1474. doi:10.1110/ps.036509.108

    Article  CAS  Google Scholar 

  58. Kollman PA, Massova I, Reyes C, Kuhn B, Huo SH, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Acc Chem Res 33:889–897. doi:10.1021/ar000033j

    Article  CAS  Google Scholar 

  59. Gohlke H, Case DA (2004) J Comput Chem 25:238–250. doi:10.1002/jcc.10379

    Article  CAS  Google Scholar 

  60. Chong LT, Duan Y, Wang L, Massova I, Kollman PA (1999) Proc Natl Acad Sci USA 96:14330–14335

    Article  CAS  Google Scholar 

  61. Massova I, Kollman PA (1999) J Am Chem Soc 121:8133–8143

    Article  CAS  Google Scholar 

  62. Chong LT, Pitera JW, Swope WC, Pande VS (2009) J Mol Graph Model 27:978–982. doi:10.1016/j.jmgm.2008.12.006

    Article  CAS  Google Scholar 

  63. Buchete NV, Hummer G (2007) Biophys J 92:3032–3039. doi:10.1529/biophysj.106.100404

    Article  CAS  Google Scholar 

  64. Huet A, Derreumaux P (2006) Biophys J 91:3829–3840. doi:10.1526/biophysj.106.090993

    Article  CAS  Google Scholar 

  65. Berhanu WM, Masunov AE (2010) Biophys Chem 149:12–21. doi:10.1016/j.bpc.2010.03.003

    Article  CAS  Google Scholar 

  66. Berhanu WM, Masunov AE (2011) J Mol Model. doi:10.1007/s00894-010-0912-4

  67. Kabsch W, Sander C (1983) Biopolymers 22:2577–2637

    Article  CAS  Google Scholar 

  68. Keller B, Daura X, van Gunsteren WF (2010) J Chem Phys 132:16. doi:10.1063/1.3301140

    Article  Google Scholar 

  69. Shao JY, Tanner SW, Thompson N, Cheatham TE (2007) J Chem Theor Comput 3:2312–2334. doi:10.1021/ct700119m

    Article  CAS  Google Scholar 

  70. Takeda T, Klimov DK (2009) Biophys J 96:4428–4437. doi:10.1016/j.bpj.2009.03.015

    Article  CAS  Google Scholar 

  71. Bhak G, Choe YJ, Paik SR (2009) BMB Rep 42:541–551

    Article  CAS  Google Scholar 

  72. Harper JD, Lansbury PT (1997) Annu Rev Biochem 66:385–407

    Article  CAS  Google Scholar 

  73. Soto C, Estrada L, Castilla J (2006) Trends Biochem Sci 31:150–155. doi:10.1016/j.tibs.2006.01.002

    Article  CAS  Google Scholar 

  74. Padrick SB, Miranker AD (2002) Biochemistry 41:4694–4703. doi:10.1021/bi0160462

    Article  CAS  Google Scholar 

  75. Ono K, Condron MM, Teplow DB (2009) Proc Natl Acad Sci USA 106:14745–14750. doi:10.1073/pnas.0905127106

    Article  CAS  Google Scholar 

  76. Sorci M, Grassucci RA, Hahn I, Frank J, Belfort G (2009) Proteins 77:62–73. doi:10.1002/prot.22417

    Article  CAS  Google Scholar 

  77. Heldt CL, Sorci M, Posada D, Hirsa A, Belfort G (2011) Biotechnol Bioeng 108:237–241. doi:10.1002/bit.22902

    Article  CAS  Google Scholar 

  78. Nayak A, Lee CC, McRae GJ, Belfort G (2009) Biotechnol Prog 25:1508–1514. doi:10.1002/btpr.255

    Article  CAS  Google Scholar 

  79. Nayak A, Sorci M, Krueger S, Belfort G (2009) Proteins 74:556–565. doi:10.1002/prot.22169

    Article  CAS  Google Scholar 

  80. Manno M, Giacomazza D, Newman J, Martorana V, San Biagio PL (2010) Langmuir 26:1424–1426. doi:10.1021/la903340v

    Google Scholar 

  81. Fodera V, Cataldo S, Librizzi F, Pignataro B, Spiccia P, Leone M (2009) J Phys Chem B 113:10830–10837. doi:10.1021/jp810972y

    Article  CAS  Google Scholar 

  82. Xue WF, Homans SW, Radford SE (2008) Proc Natl Acad Sci USA 105:8926–8931. doi:10.1073/pnas.0711664105

    Article  CAS  Google Scholar 

  83. Fawzi NL, Okabe Y, Yap EH, Head-Gordon T (2007) J Mol Biol 365:535–550. doi:10.1016/j.jmb.2006.10.011

    Article  CAS  Google Scholar 

  84. Fawzi NL, Kohlstedt KL, Okabe Y, Head-Gordon T (2008) Biophys J 94:2007–2016. doi:10.1529/biophysj.107.121467

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Foundation (CCF/CHE 0832622). This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artëm E. Masunov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 1S

Summary of the simulated single-layer insulin oligomer aggregate system (DOC 52 kb)

Table 2S

Clustering metric values for the wild-type clusters per system (DOC 62 kb)

Table 3S

Decomposition of the free energy on a per-residue basis for key residues in the monomer association of the single-layer ten-stranded insulin SH1-ST10. (A) Total Binding Free Energy Decomposition. (B) Decomposition of the contribution of the side chains to the binding free energy. (C) Decomposition of the contribution of the backbone to the binding free energy (DOC 110 kb)

Table 4S

Decomposition of the free energy on a per-residue basis for residues in chain A of the monomer association of the single-layer ten-stranded insulin SH1-ST10 and mutants of that insulin in chain A (DOC 150 kb)

Table 5S

Decomposition of the free energy on a per-residue basis for residues in chain A of the monomer association of the single-layer ten-stranded insulin SH1-ST10 and mutants of that insulin in chain B (DOC 251 kb)

Fig. S1

Secondary structural elements of the insulin model (initial structure). Helices are shown as magenta ribbons, β-strands as yellow arrows, and the rest are shown as loops. The positions of the disulfide bonds are indicated by a blue line (JPEG 110 kb)

High-resolution image (TIFF 455 kb)

Fig. S2

Superposition of the initial structures of single-layer insulin oligomer aggregates on the most representative structures of the most populated clusters (A SH1-ST1, B SH1-ST2, C SH1-ST4, D SH1-ST6, E SH1-ST4, and F SH1-ST6) for the corresponding aggregates. The initial structures are shown in blue and the most populated clusters with their corresponding cluster occupancies (in %) are shown in magenta (JPEG 127 kb)

High-resolution image (TIFF 346 kb)

Fig. S3

Profile of ∆∆G against the number of chains in single-layer insulin oligomer aggregate nucleation fibrillation. When the number of chains is high, the oligomer is stable and has favorable free energy (JPEG 44 kb)

High-resolution image (TIFF 55 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berhanu, W.M., Masunov, A.E. Controlling the aggregation and rate of release in order to improve insulin formulation: molecular dynamics study of full-length insulin amyloid oligomer models. J Mol Model 18, 1129–1142 (2012). https://doi.org/10.1007/s00894-011-1123-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1123-3

Keywords

Navigation