Skip to main content
Log in

Insights into the permeability of drugs and drug-likemolecules from MI-QSAR and HQSAR studies

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Membrane-interaction QSAR (MI-QSAR) and Holographic QSAR (HQSAR) analyses have been performed on a diverse set of drugs and drug-like molecules. MI-QSAR combines a set of membrane-solute interaction properties calculated during molecular dynamics simulation with the set of classical solute descriptors to predict the biological behavior of drugs and drug-like molecules. HQSAR is a technique which employs fragment fingerprints or molecular holograms as predictive variables of biological activity. A data set of 60 structurally diverse molecules with permeability coefficients were used to construct significant MI-QSAR and HQSAR models of Caco-2 cell permeation. A statistically meaningful MI-QSAR model was obtained with r 2 = 0.805 and q 2 = 0.696. Subsequently, HQSAR models were developed on the same data set. The best HQSAR model (r 2 = 0.915, q 2 = 0.539) was obtained with fragment distinctions atom, bond, donor and acceptor with atom count 4 to 7. The predictions for training and test set molecules are in good agreement with experimental results and show the potential of models for untested compounds. This displays the importance of MI-QSAR and HQSAR analysis in estimating ADME properties characterized by the transport of solutes through biological membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Van de Waterbeemd H, Gifford E (2003) ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov 2:192–204

    Article  Google Scholar 

  2. Wishart DS (2007) Improving Early Drug Discovery through ADME: An Overview. Drugs R&D 8:349–362

    Article  CAS  Google Scholar 

  3. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  CAS  Google Scholar 

  4. Conradi RA, Burton PS, Borchardt RT (1996) Physico-chemical and biological factors that influence a drug’s cellular permeability by passive diffusion. Methods Princ Med Chem 4:233–252

    Article  CAS  Google Scholar 

  5. Delie F, Rubas WA (1997) A human colonic cell line sharing similarities with enterocytes as a model to examine oral absorption: advantages and limitations of the Caco-2 model. Crit Rev Ther Drug Carrier Syst 14:221–286

    CAS  Google Scholar 

  6. Artursson P, Palm K, Luthman K (2001) Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev 46:27–43

    Article  CAS  Google Scholar 

  7. Lipsinki CA, Lomabardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    Article  Google Scholar 

  8. Camenisch G, Folkers G, van de Waterbeemd H (1996) Review of theoretical passive drug absorption models: historical background, recent developments and limitations. Pharm Acta Helv 71:309–327

    Article  CAS  Google Scholar 

  9. Chan O, Stewart BH (1996) Physicochemical and drug-delivery consideration for oral drug bioavailability. Drug Discov Today 1:461–473

    Article  CAS  Google Scholar 

  10. Palm K, Stenberg P, Luthman K, Artursson P (1997) Polar molecular surface properties predict the intestinal absorption of drugs in humans. Pharm Res 14:568–571

    Article  CAS  Google Scholar 

  11. Camenisch G, Alsenz J, van de Waterbeemd H, Folkers G (1998) Estimation of permeability by passive diffusion through Caco-2 cell monolayers using drugs’ lipophilicity and molecular weight. Eur J Pharm Sci 6:313–319

    Article  CAS  Google Scholar 

  12. Ponce YM, Cabrera Pérez MA, Zaldivar VR, Ofori E, Montero LA (2003) Total and local quadratic indices of the “molecular pseudograph’s atom adjacency matrix”. application to prediction of caco-2 premeability of drugs. Int J Mol Sci 4:512–536

    Article  CAS  Google Scholar 

  13. Iyer M, Tseng YJ, Senese CL, Liu J, Hopfinger AJ (2007) Prediction and mechanistic interpretation of human oral drug absorption using MI-QSAR analysis. Mol Pharm 4:218–231

    Article  CAS  Google Scholar 

  14. Fujiwara SI, Yamashita F, Hashida M (2002) Prediction of caco-2 cell permeability using a combination of mo-calculation and neural networks. Int J Pharm 237:95–105

    Article  CAS  Google Scholar 

  15. Norinder U, Osterber T, Artursson P (1997) Theoretical calculation and prediction of caco-2 cell permeability using molsurf parametrization and pls statistics. Pharm Res 14:1786–1791

    Article  CAS  Google Scholar 

  16. Cruciani G, Crivori P, Carrupt PA, Testa B (2000) Molecular fields in quantitative structure-permeation relationships: the volsurf approach. J Mol Struct THEOCHEM 503:17–30

    Article  CAS  Google Scholar 

  17. Kulkarni A, Han Y, Hopfinger AJ (2002) Predicting Caco-2 cell permeation coefficients of organic molecules using membrane-interaction QSAR analysis. J Chem Inf Comput Sci 42:331–342

    Article  CAS  Google Scholar 

  18. Liang E, Chessic K, Yazdanian M (2000) Evaluation of an accelerated Caco-2 cell permeability model. J Pharm Sci 89:336–345

    Article  CAS  Google Scholar 

  19. Ponce YM, Perez MAC, Zaldivar VR, Diaz HG, Torrens F (2004) A new topological descriptors based model for predicting intestinal epithelial transport of drugs in Caco-2 cell culture. J Pharm Sci 7:186–199

    CAS  Google Scholar 

  20. Zhu C, Jiang L, Chen TM, Hwang KK (2002) A comparative study of artificial membrane permeability assay for high throughput profiling of drug absorption potential. Eur J Med Chem 37:399–407

    Article  CAS  Google Scholar 

  21. Yee S (1997) In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man–fact or myth. Pharm Res 14:763–766

    Article  CAS  Google Scholar 

  22. Pade V, Stavchansky S (1998) Link between drug absorption solubility and permeability measurements in Caco-2 cells. J Pharm Sci 87:1604–1607

    Article  CAS  Google Scholar 

  23. Yazdanian M, Glynn SL, Wright JL, Hawi A (1998) Correlating partitioning and caco-2 cell permeability of structurally diverse small molecular weight compounds. Pharm Res 15:1490–1494

    Article  CAS  Google Scholar 

  24. SYBYL Molecular Modeling System, version 7.1, Tripos Inc., St. Louis, MO, 63144–2913, USA

  25. HYPERCHEM, version 4.5, Hypercube Inc, Waterloo, Ontario Canada N2L 3X2

  26. Van der Ploeg P, Berendsen HJC (1982) Molecular dynamics simulation of a bilayer membrane. J Chem Phys 76:3271–3276

    Article  Google Scholar 

  27. MI-QSAR, Version 1.0, The Chem21 Group Inc, 1780 Wilson Drive, IL, 60045, USA

  28. Kulkarni AS, Hopfinger AJ (1999) Membrane-interaction QSAR analysis: Application to the estimation of eye irritation by organic compounds. Pharm Res 16:1245–1253

    Article  CAS  Google Scholar 

  29. Hauser H, Pascher I, Pearson RH, Sundell S (1981) Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidylcholine. Biochim Biophys Acta 650:21–51

    CAS  Google Scholar 

  30. Kulkarni A, Hopfinger AJ, Osborne R, Bruner LH, Thompson ED (2001) Prediction of eye irritation from organic chemicals using membrane-interaction QSAR analysis. Toxicol Sci 59:335–345

    Article  CAS  Google Scholar 

  31. Iyer M, Mishra R, Han Y, Hopfinger AJ (2002) Predicting blood–brain barrier partitioning of organic molecules using membrane–interaction QSAR analysis. Pharm Res 19:1611–1621

    Article  CAS  Google Scholar 

  32. Doherty DC, MOLSIM, Version 3.0, The Chem21 Group Inc, 1780 Wilson Drive, IL, 60045, USA

  33. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  34. Liu J, Li Y, Pan D, Hopfinger AJ (2005) Predicting permeability coefficient in ADMET evaluation by using different membranes-interaction QSAR. Int J Pharm 304:115–123

    Article  CAS  Google Scholar 

  35. Kodithala K, Hopfinger AJ, Thompson ED, Robinson MK (2002) Prediction of skin irritation from organic chemicals using membrane-interaction QSAR analysis. Toxicol Sci 66:336–346

    Article  CAS  Google Scholar 

  36. Iyer M, Tseng YJ, Senese CL, Liu J, Hopfinger AJ (2006) Prediction and Mechanistic Interpretation of Human Oral Drug Absorption Using MI-QSAR Analysis. Mol Pharm 4:218–231

    Article  Google Scholar 

  37. Li Y, Liu J, Pan D, Hopfinger AJ (2005) A study of the relationship between cornea permeability and eye irritation using membrane-interaction QSAR analysis. Toxicol Sci 88:434–446

    Article  CAS  Google Scholar 

  38. Powell MJD (1977) Restart procedures for the conjugate gradient method. Math Program 12:241–254

    Article  Google Scholar 

  39. Lowis DR (1997) HQSAR a new, highly predictive QSAR technique. Tripos Tech Notes 1:1–7

    Google Scholar 

  40. Rodrigues CR, Flaherty TM, Springer C, McKerrow JH, Cohen FE (2002) CoMFA and HQSAR of acylhydrazide cruzain inhibitors. Bioorg Med Chem Lett 12:1537–1541

    Article  CAS  Google Scholar 

  41. Moda TL, Montanari CA, Andricopulo AD (2007) Hologram QSAR model for the prediction of human oral bioavailability. Bioorg Med Chem 15:7738–7745

    Article  CAS  Google Scholar 

  42. Honorio KM, Garratt RC, Andricopulo AD (2005) Hologram quantitative structure–activity relationships for a series of farnesoid X receptor activators. Bioorg Med Chem Lett 15:3119–3125

    Article  CAS  Google Scholar 

  43. Castilho MS, Guido C, Andricopulo AD (2007) Classical and hologram QSAR studies on a series of tacrine derivatives as butyrylcholinesterase inhibitors. Lett Drug Des Discov 4:106–113

    Article  CAS  Google Scholar 

  44. Borgström L, Nyberg L, Jönsson S, Lindberg C, Paulson J (1989) Pharmacokinetic evaluation in man of terbutaline given as separate enantiomers and as the racemate. Br J Clin Pharmacol 27:49–56

    Google Scholar 

Download references

Acknowledgments

The authors thank Department of Science and Technology (DST), Delhi, and Council of Scientific and Industrial Research (CSIR), New Delhi for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Elizabeth Sobhia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shinde, R.N., Srikanth, K. & Sobhia, M.E. Insights into the permeability of drugs and drug-likemolecules from MI-QSAR and HQSAR studies. J Mol Model 18, 947–962 (2012). https://doi.org/10.1007/s00894-011-1121-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1121-5

Keywords

Navigation