Skip to main content
Log in

Interactions of uranyl ion with cytochrome b 5 and its His39Ser variant as revealed by molecular simulation in combination with experimental methods

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The biological toxicity of uranyl ion (UO 2+2 ) lies in interacting with proteins and disrupting their native functions. The structural and functional consequences of UO 2+2 interacting with cytochrome b 5 (cyt b 5), a small membrane heme protein, and its heme axial ligand His39Ser variant, cyt b 5 H39S, were investigated both experimentally and theoretically. In experiments, although cyt b 5 was only slightly affected, UO 2+2 binding to cyt b 5 H39S with a K D of 2.5 μM resulted in obvious alteration of the heme active site, and led to a decrease in peroxidase activity. Theoretically, molecular simulation proposed a uranyl ion binding site for cyt b 5 at surface residues of Glu37 and Glu43, revealing both coordination and hydrogen bonding interactions. The information gained in this study provides insights into the mechanism of uranyl toxicity toward membrane protein at an atomic level.

Impacts of uranyl ion on the structure and function of cytochrome b5 H39S variant

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gorden AE, Xu J, Raymond KN, Durbin P (2003) Chem Rev 103:4207–4282

    Article  CAS  Google Scholar 

  2. Vidaud C, Gourion-Arsiquaud S, Rollin-Genetet F, Torne-Celer C, Plantevin S, Pible O, Berthomieu C, Quéméneur E (2007) Biochemistry 46:2215–2226

    Article  CAS  Google Scholar 

  3. Montavon G, Apostolidis C, Bruchertseifer F, Repinc U, Morgenstern A (2009) J Inorg Biochem 103:1609–1616

    Article  CAS  Google Scholar 

  4. Michon J, Frelon S, Garnier C, Coppin F (2010) J Fluoresc 20:581–590

    Article  CAS  Google Scholar 

  5. Pible O, Guilbaud P, Pellequer JL, Vidaud C, Quéméneur E (2006) Biochimie 88:1631–1638

    Article  CAS  Google Scholar 

  6. Van Horn JD, Huang H (2006) Coord Chem Rev 250:765–775

    Article  Google Scholar 

  7. Wegmer SV, Boyaci H, Chen H, Jensen MP, He C (2009) Angew Chem Int Edn 48:2339–2341

    Google Scholar 

  8. Lins RD, Vorpagel ER, Guglielmi M, Straatsma TP (2008) Biomacromolecules 9:29–35

    Article  CAS  Google Scholar 

  9. Vergères G, Waskell L (1995) Biochimie 7:604–620

    Article  Google Scholar 

  10. Wang WH, Wang YH et al (2002) Chem Lett 674–675

  11. Chudaev MV, Gilep AA, Usanov SA (2001) Biochemistry (Moscow) 66:667–681

    Article  CAS  Google Scholar 

  12. Wang WH, Lu JX, Yao P, Xie Y, Huang ZX (2003) Protein Eng 6:1047–1054

    Article  Google Scholar 

  13. Sigman JA, Kwok BC, Lu Y (2000) J Am Chem Soc 122:8192–8196

    Article  CAS  Google Scholar 

  14. Durley RC, Mathews FS (1996) Acta Crystallogr D 52:65–76

    Article  CAS  Google Scholar 

  15. Wang ZH, Lin YW, Rosell FI, Ni FY, Lu HJ, Yang PY, Tan XS, Li XY, Huang ZX, Mauk AG (2007) Chembiochem 8:607–609

    Article  Google Scholar 

  16. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  17. Kalé L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) J Comput Phys 151:283–312

    Article  Google Scholar 

  18. Yeung N, Lin YW, Gao YG, Zhao X, Russell BS, Lei L, Miner KD, Robinson H, Lu Y (2009) Nature 462:1079–1082

    Article  CAS  Google Scholar 

  19. Baldwin DA, Marques HM, Pratt JM (1987) J Inorg Biochem 30:203–217

    Article  CAS  Google Scholar 

  20. Moore GR, Pettigrew GW (1990) Cytochrome c: evolutionary, structural and physicochemical aspects. Springer, Berlin

    Google Scholar 

  21. Lin YW, Yeung N, Gao YG, Miner KD, Tian S, Robinson H, Lu Y (2010) Proc Natl Acad Sci USA 107:8581–8586

    Article  CAS  Google Scholar 

  22. Lin YW, Yeung N, Gao YG, Miner KD, Lei L, Robinson H, Lu Y (2010) J Am Chem Soc 132:9970–9972

    Article  CAS  Google Scholar 

  23. Lin YW, Wang WH, Zhang Q, Lu HJ, Yang PY, Xie Y, Huang ZX, Wu HM (2005) Chembiochem 6:1356–1359

    Article  CAS  Google Scholar 

  24. Diederix RE, Ubbink M, Canters GW (2002) Biochemistry 41:13067–13077

    Article  CAS  Google Scholar 

  25. Ren Y, Wang WH, Case M, Qian W, McLendon G, Huang ZX (2004) Biochemistry 4:3527–3536

    Article  Google Scholar 

  26. Im SC, Waskell L (2011) Arch Biochem Biophys 507:144–153

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully thank Prof. Zhong-Xian Huang at Fudan University, Shanghai, China, for providing the cytochrome b 5 gene and proteins, and Dr. Tianlei Ying at the National Institutes of Health (NIH), USA, for discussions regarding simulation of the uranyl ion. NAMD and VMD were developed by the Theoretical Biophysics Group in the Beckman Institute for Advanced Science and Technology at the University of Illinois at Urbana-Champaign, USA. This work is supported by the National Natural Science Foundation of China (NSFC Nos. 20877038, 10975069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Wu Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, D., Liao, LF., Zhao, MM. et al. Interactions of uranyl ion with cytochrome b 5 and its His39Ser variant as revealed by molecular simulation in combination with experimental methods. J Mol Model 18, 1009–1013 (2012). https://doi.org/10.1007/s00894-011-1097-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1097-1

Keywords

Navigation