Skip to main content
Log in

A density functional theory approach toward substituent effect in Meerwein–Eschenmoser–Claisen rearrangement

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

B3LYP/6-31 G(d) level of theory has been used for the examination of substituent effect in the concerted step of the Meerwein-Eschenmoser-Claisen rearrangement. In this regard, the effect of NO2 and NH2 groups in different positions has been investigated. The obtained results show that substituent effect is very sensitive to its position and configuration. Electron withdrawing and electron donating groups in different positions and various configurations show different and sometimes opposite results.

The examination of substituent effect in the concerted step of the Meerwein-Eschenmoser-Claisen rearrangement

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Castro AMM (2004) Claisen rearrangement over the past nine decades. Chem Rev 104:2939–3002

    Article  CAS  Google Scholar 

  2. Meerwein H, Stopp G, Florian W, Schon N (1961) Liebigs Ann Chem 641:1–39

    Article  CAS  Google Scholar 

  3. Wick AE, Steen K, Felix D, Eschenmoser A (1964) Helv Chim Acta 47:2425–2429

    Article  CAS  Google Scholar 

  4. Hiersemann M, Nubbemeyer U (2007) The claisen rearrangement: methods and applications. Wiley-VCH, Weinheim

    Book  Google Scholar 

  5. Wovkulich PM, Tang PC, Chadha NK, Batcho AD, Barrish JC, Uskoković MR (1989) Remote diastereoselection in the asymmetric total synthesis of mevinolin. J Am Chem Soc 111:2596–2599

    Article  CAS  Google Scholar 

  6. Yoshida M, Shoji Y, Shishido K (2009) Total syntheses of enokipodins a and b utilizing palladium-catalyzed addition of an arylboronic acid to an allene. Org Lett 11:1441–1443

    Article  CAS  Google Scholar 

  7. Majewski M, Snieckus V (1984) Synthesis of pyrethroid amides via epoxy amide cyclization. J Org Chem 49:2682–2687

    Article  CAS  Google Scholar 

  8. Tulshian DB, Fraser-Reid B (1984) Routes to c-glycopyranosides via sigmatropic rearrangements. J Org Chem 49:518–522

    Article  CAS  Google Scholar 

  9. Qu H, Gu X, Min BJ, Liu Z, Hruby VJ (2006) Synthesis of anti-β-substituted γ, δ-unsaturated amino acids via eschenmoser-claisen rearrangement. Org Lett 8:4215–4218

    Article  CAS  Google Scholar 

  10. Tsang R, Fraser-Reid B (1985) A route to optically active trichothecane skeleton by bisannulation of a pyranose derivative. J Org Chem 50:4659–4661

    Article  CAS  Google Scholar 

  11. Gilbert MW, Galkina A, Mulzer J (2004) Toward the total syntheses of pepluanin a and euphosalicin: concise route to a highly oxygenated cyclopentane as a common intermediate. Synlett 14:2558–2562

    Google Scholar 

  12. Loh TP, Hu QY (2001) Synthetic studies toward anisatin: a formal synthesis of (±)-8-deoxyanisatin. Org Lett 3:279–281

    Article  CAS  Google Scholar 

  13. Gradl SN, Kennedy-Smith JJ, Kim J, Trauner D (2002) A practical variant of the claisen-eschenmoser rearrangement: synthesis of unsaturated morpholine amides. Synlett 3:411–414

    Article  Google Scholar 

  14. Chen CY, Hart DJ (1990) Total synthesis of dl-stenine. J Org Chem 55:6236–6240

    Article  CAS  Google Scholar 

  15. Kündig EP, Laxmisha MS, Cannas R, Tchertchian S, Ronggang L (2005) Chromium-mediated dearomatization: application to the synthesis of racemic 15-acetoxytubipofuran and asymmetric synthesis of both enantiomers. Helv Chim Acta 88:1063–1080

    Article  Google Scholar 

  16. Linton EC, Kozlowski MC (2008) Catalytic enantioselective meerwein-eschenmoser claisen rearrangement: asymmetric synthesis of allyl oxindoles. J Am Chem Soc 130:16162–16163

    Article  CAS  Google Scholar 

  17. Rao Lingam VSP, Vinodkumar R, Mukkanti K, Thomas A, Gopalan B (2009) Tetra-n-butylammonium fluoride-catalyzed eschenmoser-claisen [3,3]-sigmatropic rearrangement. Synth Commun 39:332–341

    Article  Google Scholar 

  18. Burrows CJ, Carpenter BK (1981) Substituent effects on the aliphatic claisen rearrangement. 1. Synthesis and rearrangement of cyano-substituted allyl vinyl ethers. J Am Chem Soc 103:6983–6984

    Article  CAS  Google Scholar 

  19. Cooper JA, Olivares CM, Sandford G (2001) Nucleophilic substitution and claisen rearrangement reactions of model fluoroalkenes of general structure r-cf = cf-cf < sub > 3</sub> J Org Chem 66:4887–4891

    Article  CAS  Google Scholar 

  20. Davidson MM, Hillier IH, Vincent MA (1995) The claisen rearrangement of allyl vinyl ether in the gas phase and aqueous solution. Structures and energies predicted by high-level ab initio calculations. Chem Phys Lett 246:536–540

    Article  CAS  Google Scholar 

  21. Dewar MJS, Healy EF (1984) Mndo study of the claisen rearrangement. J Am Chem Soc 106:7127–7131

    Article  CAS  Google Scholar 

  22. Dewar MJS, Jie C (1989) Mechanism of the claisen rearrangement of allyl vinyl ethers. J Am Chem Soc 111:511–519

    Article  CAS  Google Scholar 

  23. Gajewski JJ, Gee KR, Jurayj J (1990) Energetic and rate effects of the trifluoromethyl group at c-2 and c-4 on the aliphatic claisen rearrangement. J Org Chem 55:1813–1822

    Article  CAS  Google Scholar 

  24. Khaledy MM, Kalani MYS, Khuong KS, Houk KN, Aviyente V, Neier R, Soldermann N, Velker J (2003) Origins of boat or chair preferences in the ireland-claisen rearrangements of cyclohexenyl esters: a theoretical study. J Org Chem 68:572–577

    Article  CAS  Google Scholar 

  25. McMichael KD, Korver GL (1979) Secondary deuterium isotope effects and transition state structure in the aromatic claisen rearrangement [12]. J Am Chem Soc 101:2746–2747

    Article  CAS  Google Scholar 

  26. Meyer MP, DelMonte AJ, Singleton DA (1999) Reinvestigation of the isotope effects for the claisen and aromatic claisen rearrangements: the nature of the claisen transition states. J Am Chem Soc 121:10865–10874

    Article  CAS  Google Scholar 

  27. Schuler FW, Murphy GW (1950) The kinetics of the rearrangement of vinyl allyl ether. J Am Chem Soc 72:3155–3159

    Article  CAS  Google Scholar 

  28. Vance RL, Rondan NG, Houk KN, Jensen F, Borden WT, Komornicki A, Wimmer E (1988) Transition structures for the claisen rearrangement. J Am Chem Soc 110:2314–2315

    Article  CAS  Google Scholar 

  29. Wiest O, Black KA, Houk KN (1994) Density functional theory isotope effects and activation energies for the cope and claisen rearrangements. J Am Chem Soc 116:10336–10337

    Article  CAS  Google Scholar 

  30. Frisch MJ, Trucks GW, Schlegel HB, Gill PMW, Johnson BG, Robb MA, Cheeseman JR, Keith T, Petersson GA, Montgomery JA, Raghavachari K, Al-Laham MA, Zakrzewski VG, Ortiz JV, Foresman JB, Cioslowski J, Stefanov BB, Nanayakkara A, Challacombe M, Peng CY, Ayala PY, Chen W, Wong MW, Andres JL, Replogle ES, Gomperts R, Martin RL, Fox DJ, Binkley JS, Defrees DJ, Baker J, Stewart JP, Head-Gordon M, Gonzalez C, Pople JA (1998) Gaussian 98, Revision A.9. Gaussian Inc, Pittsburgh

    Google Scholar 

  31. Frisch A, Nielsen AB, Holder AJ (2000) Gaussview users manual. Gaussian Inc, Pittsburgh

    Google Scholar 

  32. CYLview bL, CY, Université de Sherbrooke, 2009 (http://www.cylview.org)

  33. Koreeda M, Luengo JI (1985) Anionic oxy-claisen rearrangement of enolates of α-allyloxy ketones. A remarkable rate-accelerating effect exhibited by the nature of the counterion. J Am Chem Soc 107:5572–5573

    Article  CAS  Google Scholar 

  34. Barluenga J, Aznar F, Liz R, Bayod M (1984) Synthesis of substituted 2-aminopent-4-enals and 2-amino-3-(2-furyl) propanals via [3,3]- and [1,3]-sigmatropic shifts of β-allyloxyenamines. J Chem Soc Chem Commun 21:1427–1428

    Article  Google Scholar 

  35. Welch JT, Samartino JS (1985) Facile diastereoselective ester enolate claisen rearrangements of allyl fluoroacetates. J Org Chem 50:3663–3665

    Article  CAS  Google Scholar 

  36. Frey HM, Montague DC (1968) Thermal unimolecular isomerization of 1-methylallyl vinyl ether in the gas phase and in solution. Trans Faraday Soc 64:2369–2374

    Article  CAS  Google Scholar 

  37. Wilcox CS, Babston RE (1986) Substituent effects in [3,3]-sigmatropic rearrangements. Alkyl group effects and transition-state "Syn-diaxial" interactions. J Am Chem Soc 108:6636–6642

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Special thanks to Dr. Shant Shahbazian for his assistance and guidance during the study and preparing of this manuscript. We thank Professor Seik Weng Ng for making available to us his softwares and machine time facilities. The financial support of Research Council of Shahid Beheshti University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Shaabani.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(DOC 224 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghadari, R., Shaabani, A. A density functional theory approach toward substituent effect in Meerwein–Eschenmoser–Claisen rearrangement. J Mol Model 18, 319–328 (2012). https://doi.org/10.1007/s00894-011-1080-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1080-x

Keywords

Navigation