Skip to main content
Log in

Quantum chemical investigation of the thermal pyrolysis reactions of the carboxylic group in a brown coal model

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Different reaction pathways of the carboxylic group in a brown coal model were investigated by applying density function quantum chemical theory, examining the possible cross-linking and decomposition reactions between the hydrogen bonded carboxylic group–carboxylic group and the carboxylic group–hydroxyl group during the thermal pyrolysis process. The results show that bimolecular dehydration and decarboxylation of hydrogen bonded carboxylic groups have distinctly lower activation barriers and therefore, proceed preferentially at low temperature. The esterification reaction between the hydrogen bonded carboxylic group and hydroxyl group, together with unimolecular decarboxylation of isolated single carboxylic groups were also possible at moderate temperature. Aryl–aryl coupling is thought to occur via radical pyrolysis and recombination at relatively high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Domazetis G, Raoarun M, James BD (2006) Energy Fuels 20:1997–2007

    Article  CAS  Google Scholar 

  2. Ozvatan S, Yurum Y (2002) Energy Sources 24:581–589

    CAS  Google Scholar 

  3. Li C-Z (2007) Fuel 86:1664–1683

    Article  CAS  Google Scholar 

  4. Eskay TP, Britt PF, Buchanan AC (1996) Energy Fuels 10:1257–1261

    Article  CAS  Google Scholar 

  5. Ibarra J, Moliner R, Gavilan MP (1991) Fuel 70:408–413

    Article  CAS  Google Scholar 

  6. Joseph JT, Forrai TR (1992) Fuel 71:75–80

    Article  CAS  Google Scholar 

  7. Manion JA, McMillen DF, Malhotra R (1996) Energy Fuels 10:776–788

    Article  CAS  Google Scholar 

  8. Eskay TP, Britt PF, Buchanan AC (1997) Energy Fuels 11:1278–1287

    Article  CAS  Google Scholar 

  9. Mae K, Maki T, Okutsu H, Miura K (2000) Fuel 79:417–425

    Article  CAS  Google Scholar 

  10. Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I,Martin RL, Fox DJ, Keith T, Al-LahamMA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision A.1. Gaussian Inc, Pittsburgh PA

  11. Ding L, Fang WH (2010) J Org Chem 75:1630–1636

    Article  CAS  Google Scholar 

  12. Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) J Comput Chem 17:49–56

    Article  CAS  Google Scholar 

  13. Peng C, Schlegel HB (1993) Isr J Chem 33:449–454

    CAS  Google Scholar 

  14. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527

    Article  CAS  Google Scholar 

  15. Li J, Brill TB (2003) J Phys Chem A 107:2667–2673

    Article  CAS  Google Scholar 

  16. Davidson D, Newman P (1952) J Am Chem Soc 74:1515–1516

    Article  CAS  Google Scholar 

  17. Mae K, Maki T, Miura K (2002) J Chem Eng Jpn 35:778–785

    Article  CAS  Google Scholar 

  18. Britt PF, Mungall WS, Buchanan AC (1998) Energy Fuels 12:660–661

    Article  CAS  Google Scholar 

  19. Ross DS, Loo BH, Tse DS, Hirschon AS (1991) Fuel 70:289–295

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shengyu Liu or Zhiqiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Zhang, Z. & Wang, H. Quantum chemical investigation of the thermal pyrolysis reactions of the carboxylic group in a brown coal model. J Mol Model 18, 359–365 (2012). https://doi.org/10.1007/s00894-011-1077-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1077-5

Keywords

Navigation