Advertisement

Journal of Molecular Modeling

, 17:2305 | Cite as

Hydrogen sequential dissociative chemisorption on Nin(n = 2~9,13) clusters: comparison with Pt and Pd

  • Chenggang Zhou
  • Shujuan Yao
  • Qingfan Zhang
  • Jinping Wu
  • Ming Yang
  • Robert C. Forrey
  • Hansong ChengEmail author
Original Paper

Abstract

Hydrogen dissociative chemisorption and desorption on small lowest energy Nin clusters up to n = 13 as a function of H coverage was studied using density functional theory. H adsorption on the clusters was found to be preferentially at edge sites followed by 3-fold hollow sites and on-top sites. The minimum energy path calculations suggest that H2 dissociative chemisorption is both thermodynamically and kinetically favorable and the H atoms on the clusters are mobile. Calculations on the sequential H2 dissociative chemisorption on the clusters indicate that the edge sites are populated first and subsequently several on-top sites and hollow sites are also occupied upon full cluster saturation. In all cases, the average hydrogen capacity on Nin clusters is similar to that of Pdn clusters but considerably smaller than that of Ptn clusters. Comparison of hydrogen dissociative chemisorption energies and H desorption energies at full H-coverage among the Ni family clusters was made.

Keywords

Hydrogen dissociative chemisorption Nickel clusters Palladium clusters Platinum clusters 

Notes

Acknowledgments

The work conducted at China University of Geosciences was supported by the National Natural Science Foundation of China. (Grant No. 20973159). R. C. F. acknowledges support by the National Science Foundation (Grant No. PHY-0854838). The work at NUS (National University of Singapore) was supported by a NUS start-up fund.

References

  1. 1.
    Doyle AM, Shaikhutdinov SK, Jackson SD et al (2003) Angew Chem Int Ed 42:5240–5243CrossRefGoogle Scholar
  2. 2.
    Cuevas F, Joubert JM, Latroche M et al (2001) Appl Phys A Mater Sci Process 72:225–238CrossRefGoogle Scholar
  3. 3.
    Chartouni D, Kuriyama N, Kiyobayashi T et al (2002) Int J Hydrogen Energy 27:945–952CrossRefGoogle Scholar
  4. 4.
    Lin YM, Rei MH (2000) Int J Hydrogen Energy 25:211–219CrossRefGoogle Scholar
  5. 5.
    Chen SC, Hung CCY, Tu GC et al (2008) Int J Hydrogen Energy 33:1880–1889CrossRefGoogle Scholar
  6. 6.
    Chen LA, Zhou CG, Wu JP et al (2009) Front Phys China 4:356–366CrossRefGoogle Scholar
  7. 7.
    Bertani V, Cavallotti C, Masi M et al (2000) J Phys Chem A 104:11390–11397CrossRefGoogle Scholar
  8. 8.
    Roques J, Lacaze-Dufaure C, Mijoule C (2007) J Chem Theory Comput 3:878–884CrossRefGoogle Scholar
  9. 9.
    D'Anna V, Duca D, Ferrante F et al (2009) Phys Chem Chem Phys 11:4077–4083CrossRefGoogle Scholar
  10. 10.
    Liu X, Dilger H, Eichel RA et al (2006) J Phys Chem B 110:2013–2023CrossRefGoogle Scholar
  11. 11.
    Cheng HS, Chen L, Cooper AC et al (2008) Energy Environ Sci 1:338–354CrossRefGoogle Scholar
  12. 12.
    Chen L, Cooper AC, Pez GP et al (2007) J Phys Chem C 111:5514–5519CrossRefGoogle Scholar
  13. 13.
    Zhou CG, Wu JP, Nie AH et al (2007) J Phys Chem C 111:12773–12778CrossRefGoogle Scholar
  14. 14.
    Zhou CG, Yao SJ, Wu JP et al (2009) J Comput Theor Nanosci 6:1320–1327CrossRefGoogle Scholar
  15. 15.
    Zhou CG, Yao SJ, Wu JP et al (2008) Phys Chem Chem Phys 10:5445–5451CrossRefGoogle Scholar
  16. 16.
    Apsel SE, Emmert JW, Deng J et al (1996) Phys Rev Lett 76:1441–1444CrossRefGoogle Scholar
  17. 17.
    Khanna SN, Beltran M, Jena P (2001) Phys Rev B 64:235419CrossRefGoogle Scholar
  18. 18.
    Liu SR, Zhai HJ, Wang LS (2002) Phys Rev B 65:113401CrossRefGoogle Scholar
  19. 19.
    Gerion D, Hirt A, Billas IML et al (2000) Phys Rev B 62:7491–7501CrossRefGoogle Scholar
  20. 20.
    Mark BK (2002) J Chem Phys 116:9703–9711CrossRefGoogle Scholar
  21. 21.
    Alonso JA (2000) Chem Rev 100:637–677CrossRefGoogle Scholar
  22. 22.
    Estiu GL, Zerner MC (1996) J Phys Chem 100:16874–16880CrossRefGoogle Scholar
  23. 23.
    Parks EK, Zhu L, Ho J et al (1994) J Chem Phys 100:7206–7222CrossRefGoogle Scholar
  24. 24.
    Reuse FA, Khanna SN (1995) Chem Phys Lett 234:77–81CrossRefGoogle Scholar
  25. 25.
    Desmarais N, Jamorski C, Reuse FA et al (1998) Chem Phys Lett 294:480–486CrossRefGoogle Scholar
  26. 26.
    Michelini MC, Diez RP, Jubert AH (2001) Int J Quantum Chem 85:22–33CrossRefGoogle Scholar
  27. 27.
    Michelini MC, Diez RP, Jubert AH (2004) Comput Mater Sci 31:292–298Google Scholar
  28. 28.
    Baletto F, Ferrando R (2005) Rev Mod Phys 77:371–423CrossRefGoogle Scholar
  29. 29.
    Futschek T, Hafner J, Marsman M (2006) J Phys Condens Matter 18:9703–9748CrossRefGoogle Scholar
  30. 30.
    Ashman C, Khanna SN, Pederson MR (2003) Chem Phys Lett 368:257–261CrossRefGoogle Scholar
  31. 31.
    Swart I, de Groot FMF, Weckhuysen BM et al (2008) J Phys Chem A 112:1139–1149CrossRefGoogle Scholar
  32. 32.
    Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249CrossRefGoogle Scholar
  33. 33.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  34. 34.
    Delley B (1996) J Phys Chem 100:6107–6110CrossRefGoogle Scholar
  35. 35.
    Delley B (2000) J Chem Phys 113:7756–7764CrossRefGoogle Scholar
  36. 36.
    Dolg M, Wedig U, Stoll H et al (1987) J Chem Phys 86:866–872CrossRefGoogle Scholar
  37. 37.
    Bergner A, Dolg M, Kuchle W et al (1993) Mol Phys 80:1431–1441CrossRefGoogle Scholar
  38. 38.
    Delley B (1990) J Chem Phys 92:508–517CrossRefGoogle Scholar
  39. 39.
    Hirshfeld FL (1977) Theor Chim Acta 44:129–138CrossRefGoogle Scholar
  40. 40.
    Halgren TA, Lipscomb WN (1977) Chem Phys Lett 49:225–232CrossRefGoogle Scholar
  41. 41.
    Nosé S (1984) Mol Phys 52:255–268CrossRefGoogle Scholar
  42. 42.
    Michelini MC, Diez RP, Jubert AH (1998) Int J Quantum Chem 70:693–701CrossRefGoogle Scholar
  43. 43.
    Michelini MC, Diez RP, Jubert AH (1999) J Mol Struct 490:181–188Google Scholar
  44. 44.
    Nie AH, Wu JP, Zhou CG et al (2007) Int J Quantum Chem 107:219–224CrossRefGoogle Scholar
  45. 45.
    Luo C, Zhou CG, Wu JP et al (2007) Int J Quantum Chem 107:1632–1641CrossRefGoogle Scholar
  46. 46.
    Kittel C (2005) Introduction to Solid State Physics, 8th edn. Wiley, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Chenggang Zhou
    • 1
    • 2
  • Shujuan Yao
    • 3
  • Qingfan Zhang
    • 2
  • Jinping Wu
    • 2
  • Ming Yang
    • 2
  • Robert C. Forrey
    • 4
  • Hansong Cheng
    • 1
    • 2
    Email author
  1. 1.Department of ChemistryNational University of SingaporeSingaporeSingapore
  2. 2.Sustainable Energy LaboratoryChina University of Geosciences (Wuhan)WuhanChina
  3. 3.College of Materials Science and EngineeringLiaocheng UniversityLiaochengChina
  4. 4.Department of PhysicsPenn State UniversityReadingUSA

Personalised recommendations